首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring the ratio of the number of photooriented chloroplaststo the total number of chloroplasts, we found that photoorientationof chloroplasts in protonemata of the fern Adiantum capillus-veneriscould be induced by brief irradiation with polarized red light.After irradiation with red light (R) of 3 or 10 min, orientationalmovement was detected as early as 10 min after the irradiation;it continued during the subsequent dark period for 30–60min, after which chloroplasts gradually dispersed again. WhenR-treated protonemata were irradiated briefly with a second10-min pulse of R, 60 min after the onset of the first irradiation,the orientational response of chloroplasts was again observed.Typical red/far-red photoreversibility was apparent in the response,indicating the involvement of phytochrome. By contrast, irradiationwith polarized blue light for 10 min was ineffective, whileirradiation with blue light (B) at the same fluence for a longerperiod of time clearly induced the photoorientation of chloroplasts.It is likely that longterm irradiation is necessary for theresponse mediated by a blue-light receptor. When protonemata were irradiated with far-red light (FR) immediatelyafter R or after a subsequent dark period of 10 min, the magnitudeof the orientational response was smaller and chloroplasts dispersedmore quickly than those exposed to R alone. When FR was appliedat 50 min, when the response to R had reached the maximum level,chloroplasts again dispersed rapidly to their dark positions.These results indicate that PFR not only induces the photoorientationmovement of chloroplasts but also fixes the chloroplasts atthe sites to which they have moved as a result of photoorientation. (Received June 2, 1993; Accepted January 11, 1994)  相似文献   

2.
A. Kadota  M. Wada 《Protoplasma》1992,167(1-2):97-107
Summary Changes in the organization of cortical actin microfilaments during phytochrome-mediated and blue light-induced photoorientation of chloroplasts were investigated by rhodamine-phalloidin staining in protonemal cells of the fernAdiantum capillusveneris. Low- and high-fluence rate responses were induced by partial irradiation of individual cells with a microbeam of 20 m in width. In the low-fluence rate responses to red and blue light, a circular structure composed of microfilaments was induced on the chloroplast concentrated in the irradiated region, on the side facing the plasma membrane, as already reported in the case of the low-fluence rate response induced by polarized red or blue light. Such a structure was not observed on the chloroplasts located far from the microbeam. Time-course studies revealed that the structure was induced after the chloroplasts gathered in the illuminated region and that the structure disappeared before chloroplasts moved out of this region when the microbeam was turned off. In the high-fluence rate response to blue light, chloroplasts avoided the irradiated site but accumulated in the shaded area adjacent the edges of microbeam. The circular structure made of microfilaments was also observed on the chloroplasts gathered in the area and it showed the same behavior with respect to its appearance and disappearance during a light/dark regime as in the case of the low-fluence rate response. However, no such circular structure was observed in the high-fluence rate response to red light, in which case the chloroplasts also avoided the illuminated region but no accumulation in the adjacent areas was induced. These results indicate that the circular structure composed of microfilaments may play a role in the anchorage of the chloroplast during intracellular photo-orientation.  相似文献   

3.
A. Kadota  M. Wada 《Protoplasma》1989,151(2-3):171-174
Summary Circular F-actin on a photooriented chloroplast was observed by rhodamine-phalloidin staining in the fernAdiantum protonemal cells in which phytochrome- or blue light receptor-mediated intracellular photoorientation of chloroplasts was induced. The circular structure located along the edge of chloroplast on the side facing the plasma membrane but not on the opposite side. Most of the chloroplasts in protonemal cell have dumbbell-shape and the circular ring-like structure was found on each half of the dumbbell. The structure was not observed in the cells which were kept in the dark, indicating the change of F-actin organization by the light condition. Possible role of the structure on the anchorage of chloroplast in its intracellular photoorientation was discussed.  相似文献   

4.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

5.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

6.
Orientational movement of chloroplasts was induced by a brief irradiation with red light (R) or blue light (B) in dark-adapted prothallial cells ofAdiantum, whose chloroplasts had gathered along the cell dividing wall (i.e., the anticlinal wall). When the whole dark-adapted prothallia were irradiated from a horizontal direction (i.e., from their lobes) with horizontally vibrating polarized R (H pol. R) for 10 or 3 min, the chloroplast left the anticlinal walls and spread over the prothallial surface (i.e., the periclinal walls) within 1–2 hr after the onset of irradiation, returning to the anticlinal wall (dark-position) within 10 hr. However, vertically vibrating polarized R (V pol. R) for 10 min did not induce the movement towards periclinal walls. The R effect was cancelled by non-polarized far-red light (FR) irradiation just after the R irradiation. Irradiation with H pol. B for 10 or 3 min but not with V pol. B could also induce a similar movement of chloroplasts, although the chloroplasts returned within 4 hr. The effect of H pol. B, however, was not cancelled by the subsequent FR irradiation. When a part of the dark-adapted cell at the prothallial surface was irradiated from above with a microbeam of R or B for 1 min, chloroplasts of the cell in the dark-position moved towards the irradiated locus in subsequent darkness. However, in the neighboring cells, orientational movement was not induced by either R or B microbeams. These results show that in dark-adapted prothallial cells, both brief irradiation with R and B can induce chloroplast photo-orientation and that the photoreceptors are phytochrome and blue light-absorbing pigment, respectively. It is also clear that effects of both R and B irradiation do not transfer to neighboring cells.  相似文献   

7.
Shigeru Itoh  Shinji Morita 《BBA》1982,682(3):413-419
(1) The relation between the membrane potential and phosphorylation was studied in chloroplasts rapidly prepared from illuminated spinach leaves (light chloroplasts) and from dark-adapted leaves (dark chloroplasts). Light chloroplasts had a higher ATP hydrolysis activity than dark chloroplasts. (2) In the presence of ADP or ATP, a rapidly decaying phase of the field-indicating 518 nm absorbance change with a half-time of 15 ms became apparent in addition to the slow phase with a half-time of more than 300 ms in either type of chloroplast. Under these conditions, light chloroplasts showed a larger rapid phase than dark chloroplasts. (3) The rapid phase was suppressed by dicyclohexylcarbodiimide and was assumed to reflect the dissipation of membrane potential due to proton movements inside the CF1-CF0 ATP synthetase. (4) A model for the proton movement in ATP synthetase is proposed.  相似文献   

8.
Chloroplasts change their positions in a cell in response to light intensities. The photoreceptors involved in chloroplast photo-relocation movements and the behavior of chloroplasts during their migration were identified in our previous studies, but the mechanism of movement has yet to be clarified. In this study, the behavior of actin filaments under various light conditions was observed in Adiantum capillus-veneris gametophytes. In chloroplasts staying in one place under a weak light condition and not moving, circular structures composed of actin filaments were observed around the chloroplast periphery. In contrast, short actin filaments were observed at the leading edge of moving chloroplasts induced by partial cell irradiation. In the dark, the circular structures found under the weak light condition disappeared and then reappeared around the moving chloroplasts. Mutant analyses revealed that the disappearance of the circular actin structure was mediated by the blue light photoreceptor, phototropin2.  相似文献   

9.
Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1–5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24–36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.  相似文献   

10.
Chloroplast Photoorientation in Enucleated Fern Protonemata   总被引:1,自引:0,他引:1  
  相似文献   

11.
The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.Key words: actin, Arabidopsis, blue light, chloroplast positioning, phototropin, nuclear positioning  相似文献   

12.
Chloroplast movements are a normal physiological response to changes in light intensity and provide a good model system to analyse the signal transduction pathways following light perception. Blue-light-dependent chloroplast movements were observed in Lemna trisulca using confocal optical sectioning and 3-D reconstruction or photometric measurements of leaf transmission. Chloroplasts moved away from strong blue light (SBL) towards the anticlinal walls (profile position), and towards the periclinal walls (face position) under weak blue light (WBL) over about 20-40 min. Cytoplasmic calcium ([Ca2 + ]cyt) forms part of the signalling system in response to SBL as movements were associated with small increases in [Ca2 + ]cyt and were blocked by antagonists of calcium homeostasis, including EGTA, nifedipine, verapamil, caffeine, thapsigargin, TFP (trifluoperazine), W7 and compound 48/80. Treatments predicted to affect internal Ca2 + stores gave the most rapid and pronounced effects. In addition, artificially increasing [Ca2 + ]cyt in darkness using the Ca2 + ionophore A23187 and high external Ca2 + (or Sr2 + ), triggered partial movement of chloroplasts to profile position analogous to a SBL response. These data are all consistent with [Ca2 + ]cyt acting as a signal in SBL responses; however, the situation is more complex given that both WBL and SBL responses were inhibited to a similar extent by all the Ca2 + -signalling antagonists used. As the direction of chloroplast movement in WBL is exactly opposite to that in SBL, we conclude that, whilst proper regulation of [Ca2 + ]cyt homeostasis is critical for both SBL and WBL responses, additional factors may be required to specify the direction of chloroplast movement.  相似文献   

13.
In gametophytic cells (prothalli) of the fern Adiantum capillus-veneris, nuclei as well as chloroplasts change their position according to light conditions. Nuclei reside on anticlinal walls in darkness and move to periclinal or anticlinal walls under weak or strong light conditions, respectively. Here we reveal that red light-induced nuclear movement is mediated by neochrome1 (neo1), blue light-induced movement is redundantly mediated by neo1, phototropin2 (phot2) and possibly phot1, and dark positioning of both nuclei and chloroplasts is mediated by phot2. Thus, both the nuclear and chloroplast photorelocation movements share common photoreceptor systems.  相似文献   

14.
Johnson EJ  Bruff BS 《Plant physiology》1967,42(10):1321-1328
Washed whole chloroplasts of Spinacia oleracea isolated and assayed in a tris (hydroxymethyl aminomethane)-HCl buffered sucrose solution exhibited low dark CO2 fixing activity, whereas washed whole chloroplasts isolated in the same buffer but assayed in that buffer without sucrose exhibited much greater dark CO2 fixing activity. The lowered activity could be attributed to the impermeability of the chloroplast membrane to ribose-5-phosphate or adenosine triphosphate. The preservation of the integrity of the chloroplast membrane, as reflected by its impermeability to either or both of the abovementioned compounds, was measured by the fixation of 14CO2 into acid-stable products in the presence of ribose-5-phosphate and adenosine triphosphate by the whole chloroplast as compared with fixation by the chloroplast extract. An effect (i.e., apparent resistance to the passage of ribose-5-phosphate or adenosine-5-triphosphate into the chloroplast) similar to, but less pronounced than, that produced by the presence of sucrose in the isolation medium was observed upon the addition of MnCl2 or CaCl2 to the buffered sucrose isolation medium. The addition of KCl enhanced slightly the effect produced by addition of sucrose alone to the isolation medium. The presence of MgCl2 in the isolation medium, however, either caused the chloroplasts to become leaky or more fragile since more of the activity of the carboxylative phase enzymes appeared in the cytoplasm. When a mixture of all of the metal ions was added to the buffered sucrose suspending medium, the chloroplasts exhibited the same response observed with MgCl2 alone. The addition of ethylene diaminetetraacetate or dithiothreitol appeared to alter the permeability of the chloroplast membrane nonspecifically when the assay was conducted in the absence of sucrose. Specific activities (μmoles CO2 fixed/mg chlorophyll × hr) as high as 329.6 have been observed for dark fixation by chloroplasts. The phosphoenolpyruvate carboxylase activity in the chloroplasts was only one-seventh that of ribulose diphosphate carboxylase. The phosphoenolpyruvate carboxylase activity in the cytoplasm was 5 times that of the chloroplasts.  相似文献   

15.
Dark-grown cucumber seedlings were exposed to intermittent light (2 min light and 98 min dark) and then cotyledons were incubated with 50 mM CaCl2 in the dark. Chlorophyll (Chl) a was selectively accumulated under intermittent light and Chl b was accumulated during the subsequent dark incubation with CaCl2. The change in chlorophyll-protein complexes during Chl b accumulation induced by CaCl2 in the dark was investigated by SDS-polyacrylamide gel electrophoresis. Chlorophyll-protein complex I and free chlorophyll were major chlorophyll-containing bands of the cotyledons intermittently illuminated 10 times. When these cotyledons were incubated with CaCl2 in the dark, the light-harvesting Chl complex was formed. When the number of intermittent illumination periods was extended to 55, small amounts of Chl b and light-harvesting Chl complex were recognized at the end of intermittent light treatment, and these two pigments were further increased during the subsequent incubation of the cotyledons with CaCl2 in the dark compared to water controls.  相似文献   

16.
Yung-Sing Li 《BBA》1975,376(1):180-188
Chloroplast fluorescence was excited by a weak measuring beam. A time-separated actinic light was used to modify the redox states of Q which in turn induced a change in the fluorescence yield. In salt-depleted chloroplasts, fluorescence saturated at a low actinic light intensity. CaCl2 increased the “variable” fluorescence as well as the rate of ferricyanide-Hill reaction. With Tris-washed chloroplasts, Photosystem II donor couple, phenylenediamine and ascorbate, did not increase the fluorescence to a large extent without the presence of CaCl2. It is suggested that salt-depletion inactivates the Photosystem II reaction center of chloroplasts.  相似文献   

17.

Background

The mechanism of the light-dependent movements of chloroplasts is based on actin and myosin but its details are largely unknown. The movements are activated by blue light in terrestrial angiosperms. The aim of the present study was to determine the role of myosin associated with the chloroplast surface in the light-induced chloroplast responses in Arabidopsis thaliana. The localization of myosins was investigated under blue light intensities generating avoidance and accumulation responses of chloroplasts. The localization was compared in wild type plants and in phot2 mutant lacking the avoidance response.

Results

Wild type and phot2 mutant plants were irradiated with strong (36 µEm−2s−1) and/or weak (0.8 µEm−2s−1) blue light. The leaf tissue was immunolabeled with antimyosin antibodies. Different arrangements of myosins were observed in the mesophyll depending on the fluence rate in wild type plants. In tissue irradiated with weak blue light myosins were associated with chloroplast envelopes. In contrast, in tissue irradiated with strong blue light chloroplasts were almost myosin-free. The effect did not occur in red light and in the phot2 mutant.

Conclusions

Myosin displacement is blue light specific, i.e., it is associated with the activation of a specific blue-light photoreceptor. We suggest that the reorganization of myosins is essential for chloroplast movement. Myosins appear to be the final step of the signal transduction pathway starting with phototropin2 and leading to chloroplast movements.Key Words: Arabidopsis, blue light, chloroplast movements, myosins, phototropins  相似文献   

18.
  • C4 plants supply concentrated CO2 to bundle sheath (BS) cells, improving photosynthetic efficiency by suppressing photorespiration. Mesophyll chloroplasts in C4 plants are redistributed toward the sides of the BS cells (aggregative movement) in response to environmental stresses under light. Although this chloroplast movement is common in C4 plants, the significance and mechanisms underlying the aggregative movement remain unknown.
  • Under environmental stresses, such as drought and salt, CO2 uptake from the atmosphere is suppressed by closing stomata to prevent water loss. We hypothesized that CO2 limitation may induce the chloroplast aggregative movement. In this study, the mesophyll chloroplast arrangement in a leaf of finger millet, an NAD-malic enzyme type C4 plant, was examined under different CO2 concentrations and light conditions.
  • CO2 limitation around the leaves promoted the aggregative movement, but the aggregative movement was not suppressed, even at the higher CO2 concentration than in the atmosphere, under high intensity blue light. In addition, mesophyll chloroplasts did not change their arrangement under darkness or red light.
  • From these results, it can be concluded that CO2 limitation is not a direct inducer of the aggregative movement but would be a promoting factor of the movement under high intensity blue light.
  相似文献   

19.
H. Adamson  N. Packer  J. Gregory 《Planta》1985,165(4):469-476
Intact plants and isolated leaves of Zostera capricornii Martens ex Aschers were transferred from daylight to darkness. Substantial amounts of chloropyll a and b continued to accumulate in immature and mature tissue in the same ratio as in the light and were incorporated into chlorophyll-protein complexes in the thylakoids. A small amount of protochlorophyllide also accumulated in immature tissue in the dark. Proplastids and immature chloroplasts continued to develop into mature chloroplasts in the dark in the normal manner but prolamellar bodies, which are a conspicuous feature of immature chloroplasts, took longer to disperse than in the light. Protochlorophyllide accumulation and prolamellar-body formation were not correlated. The results indicate that Zostera has a genetic capacity for dark chlorophyll synthesis which is expressed in immature and mature leaf tissue and enables this plant to continue synthesising chlorophyll and assembling chloroplasts at night.Abbreviations Chl chlorophyll - T o time of transfer to darkness  相似文献   

20.
M. J. Jaffe  A. W. Galston 《Planta》1967,77(2):135-141
Summary The rapid nyctinastic movements of Albizzia julibrissin pinnules are under the control of phytochrome. When given prior to a dark period, red light facilitates and far-red light inhibits pinnule closure in the dark. These light effects are mutually photoreversible. The opening reaction of the pinnules following a dark period is mediated mainly by blue light. The nyctinastic closure response is accompanied by an increased rate of electrolyte efflux from the cut pinna base. This observation, coupled with the fact that the rapid nyctinastic movement is not affected by actinomycin D, supports the view that phytochrome control of the sleep movement is not mediated through effects on RNA metabolism, but rather through changes in membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号