首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A statistical comparison was made of geometric characteristics (area of cross section of the soma and proximal dendrites and dcon, the diameter of the circle of equivalent area to it) of propriospinal neurons of the cat spinal cord labeled with horseradish peroxidase. The linear dimensions of these cells differed by a factor of about seven. The mean dcon of propriospinal neurons in the cervical, thoracic, and lumbar divisions, whose axons reach level L6-7, was 39.9, 30.8, and 36.9 µm, respectively; direct correlation between the size of the neurons and the length of their axons was thus not observed. Characteristics of distribution of sizes of units in the cervical and thoracic divisions indicate the presence of two cell populations forming long propriospinal tracts; one consisting of a few, large neurons, concentrated in the cervical segments, the other consisting of small neurons, distributed among the cervical and thoracic segments. The mean dcon of neurons in the cervical division whose axons reach more caudal segments of the same cervical division was 44.2 µm (on account of a considerable number of large units in the ventral horn), evidence of the large relative size of the short-axon propriospinal neurons in this division of the spinal cord. Neurons located in the dorsal parts of the dorsal horn were the smallest in size, those located in the ventral horn were the largest. No significant differences were found in the dimensions of propriospinal neurons with uncrossed and crossed axons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 238–247, March–April, 1984.  相似文献   

2.
Unilateral injections of horseradish peroxidase into the cat spinal cord at different segmental levels revealed a laminar distribution of spinal interneurons that are sources of ipsilateral and contralateral propriospinal pathways of different lengths. The majority of the long pathways connecting cervical and lumbar segments are formed by neurons located in the central quadrants (laminae VII and VIII) bilaterally; a few such neurons also are present in the marginal layer and in lateral zones at the base of the dorsal horn (ipsilaterally). The zones containing numerous propriospinal neurons forming short (extending over a few segments) connections were more extensive. In the lumbar portion neurons which were sources of short uncrossed pathways tended to be concentrated in the lateral areas of the base of the dorsal horn, intermediate zone, and ventral horn, whereas sources of crossed pathways were concentrated in the ventromedial zones of gray matter. In the cervical portion "short" propriospinal neurons forming both ipsilateral and contralateral projections were concentrated in the lateral zones of gray matter. Neurons of the marginal layer and substantia gelatinosa and neurons of intermediolateral sympathetic nuclei also were sources of descending propriospinal pathways. Some propriospinal axons were intermediate in length. The distribution of neurons with axons of this kind largely coincided with the distribution of neurons that were sources of long propriospinal pathways. The connection between the spatial distribution of different groups of propriospinal neurons and the organization of the synaptic inputs into them, and also correlation between the morphological and functional characteristics of these neurons are discussed.  相似文献   

3.
Intracellular and extracellular recordings of antidromic action potentials were applied to invetigate neurons of the S2 segment projecting to the C6 segment of the cat spinal cord. The cell bodies were located in laminae VII and VIII of the gray matter while axons ascended in lateral funiculi. Thirty-two out of the total 45 neurons were found to project to the C6 segment bilaterally, seven ipsilaterally and six contralaterally. The axonal conduction velocities were in the 42–96 m/s range and in some neurons were significantly lower in distal parts of axons, supposing that some neurons may give off collateral branches to various segments of the spinal cord. It is discussed if the investigated neurons form a part of the propriospinal system or if their cervical projections are only collaterals of long tracts ascending to supraspinal levels. The organisation of the presented connections between spinal enlargements indicates their contribution in complex mechanisms of co-ordination of movements of the limbs.  相似文献   

4.
The funicular distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting axons was examined in the white matter of the rabbit spinal cord by using horizontal, parasaggital, and transverse sections. Four morphologically distinct kinds of NADPHd-exhibiting axons (2.5–3.5 m in diameter) were identified in the sulcomarginal fasciculus as a part of the ventral column in the cervical and upper thoracic segments and in the long propriospinal bundle of the ventral column in Th3–L3 segments. Varicose NADPHd-exhibiting axons of the sympathetic preganglionic neurons, characterized by widely spaced varicosities, were found in the ventral column of Th2–L3 segments. A third kind of NADPHd-positive ultrafine axons, 0.3–0.5 m in diameter with numerous varicosities mostly spherical in shape, was identified in large number within Lissauer's tract. The last group of NADPHd-exhibiting axons (1.0–1.5 m in diameter) occurred in the Lissauer tract. Most of these axons were traceable for considerable distances and generated varicosities varying in shape from spherical to elliptical forms. The majority of NADPHd-exhibiting axons identified in the cuneate and gracile fascicles were concentrated in the deep portion of the dorsal column. An extremely reduced number of NADPHd-exhibiting axons, confirmed by a computer-assisted image-processing system, was found in the dorsal half of the gracile fascicle. Axonal NADPHd positivity could not be detected in a wide area of the lateral column consistent with the location of the dorsal spinocerebellar tract. Numerous, mostly thin NADPHd-positive axonal profiles were detected in the dorsolateral funiculus in all the segments studied and in a juxtagriseal portion of the lateral column as far as the cervical and lumbar enlargements. A massive occurrence of axonal NADPHd positivity was detected in the juxtagriseal layer of the ventral column all along the rostrocaudal axis of the spinal cord. The prominent NADPHd-exhibiting bundles containing thick, smooth, nonvaricose axons were identified in the mediobasal and central portion of the ventral column. First, the sulcomarginal fasciculus was found in the basal and medial portion of the ventral column in all cervical and upper thoracic segments. Second, more caudally, a long propriospinal bundle displaying prominent NADPHd positivity was localized in the central portion of the ventral column throughout the Th3–L3 segments.  相似文献   

5.
Activity of propriospinal neurons in segments C3 and C4 was recorded in immobilized decerebrate cats, whose spinal cord was divided at the lower thoracic level, during locomotor activity of neuronal mechanisms controlling the forelimbs (fictitious locomotion of the forelimbs). Neurons were identified according to antidromic responses to stimulation of the lateral column of the spinal cord at level C6. Antidromic responses also appeared in 70% of these neurons to stimulation of the medullary lateral reticular nucleus. During fictitious locomotion, i.e., in the absence of afferent signals from the limb receptors, rhythmic modulation of the discharge of most neurons was observed, correlating with activity of motoneurons. If the rostral region of the cervical enlargement of the spinal cord was cooled, causing generation of the locomotor rhythm to cease, rhythmic activity of propriospinal neurons in segments C3 and C4 also ceased. The main source of modulation of activity of propriospinal neurons in segments C3 and C4 is thus the central spinal mechanisms controlling activity of the forelimbs.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow University. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 320–326, May–June, 1985.  相似文献   

6.
The distribution of propriospinal fiber terminals of the lateral funiculus in the lumbar segments of the cat spinal cord was examined by light and electron microscopy. For the selective demonstration of these terminals, preliminary hemisectioning of the brain at the boundary of the thoracic and lumbar segment, eliminating all the long descending pathways, and subsequent hemisectioning or sectioning of the lateral funiculus at the level of the third lumbar segment was carried out. It was established by staining the degenerating endings (by the Fink—Heimer method) that the terminals of the descending and ascending propriospinal fibers, which form part of the lateral and ventral funiculi, are located mainly in the lateral and medial parts of lamina VII and the dorsal section of lamina VIII, according to Rexed, as well as in the regions adjacent to the dorsolateral and ventromedial motor nuclei. A large number of these terminals is found in the corresponding regions of the gray matter on the contralateral side of the brain. Since, in the case of selective injury of the lateral funiculus the number of degenerating terminals in lamina VIII is noticeably decreased, it can be assumed that the propriospinal neuron terminals of the ventral funiculus are concentrated mainly in lamina VIII. The axons of the propriospinal neurons extend over several segments both in the ascending and in the descending directions. It was shown in an electron microscopic study of the regions in which most of the propriospinal terminals are located that these terminals are of an axo-dendritic nature and terminate in the dendrites of both inter- and motor neurons. Their degeneration can be of the "light" or "dark" type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 401–407, July–August, 1971.  相似文献   

7.
We have carried out intracellular recording from the motor neurons of the lumbar section of the cat spinal cord with electrical stimulation of the propriospinal axons descending in the dorsolateral funiculus. To prevent activation of the long descending pathways of the lateral funiculus, ipsilateral hemisectioning of the spine was performed in the segments L1-L2 10–14 days before the experiment. Stimulation of the dorsolateral funiculus in two segments cranial to the point of recording elicited in the flexor motor neurons essentially e.p.s.p. and in the extensor neurons i.p.s.p. with a latent period, on the average, of 1.97 and 1.93 msec, respectively. The amplitude of such p.s.p. considerably rose with rise in the frequency of stimulation of the funiculus to 50–100 a second. Activation of the segmental interneurons was observed only in a few cases. It is assumed that the synaptic processes elicited in the lumbar motor neurons are the result of the monosynaptic influences of the propriospinal neurons.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 5–14, July–August, 1969.  相似文献   

8.
The location of labeled neurons that are sources of ascending crossed and uncrossed supraspinal fiber systems was studied in the laminae of gray matter of the spinal cord in 18 cats by the retrograde axonal transport of horseradish peroxidase method. Neurons in the lateral zones of the dorsal horn were shown to make direct, and cells in neighboring regions indirect (through relay nuclei of the dorsal columns) connections with the contralateral thalamus. In the lower segments of the spinal cord sources of crossed spinoreticular and spinothalamic fiber systems are located in the medial regions of the ventral horn and lateral zones of the lateral basilar region. Some large neurons in the motor nuclei were shown to send their axons into the lateral reticular nucleus of the medulla. On the basis of the results a scheme of the laminar organization of sources of ascending fiber systems in the cat spinal cord is constructed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 451–459, September–October, 1979.  相似文献   

9.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

10.
In the experiments, performed on cats by means of retrograde axonal horseradish peroxidase transport, localization of the sources of descending supra- and propriospinal projections to the area of the lumbar parts of the spinal cord, where the generator of locomotor movements is located. After local administration of horseradish peroxidase into the spinal cord, the greatest amount of the labelled neurons is observed in the ipsilateral reticular formation and in the Koelliker-Fuse nucleus. Comparison of the number of neurons, forming the descending projections from the I cervical up to the IV lumbar segments demonstrates an essential predominance of short propriospinal connections over the long, as well as over the supraspinal ones.  相似文献   

11.
The distribution and ultrastructure of terminals of the propriospinal fibers of the lateral funiculus in the cervical segments of the cat spinal cord were studied by the experimental degeneration method. A preliminary lateral hemisection of the spinal cord was carried out 5–6 months earlier at the level of segments C2 or C3 to destroy all the long descending pathways; the lateral funiculus was then divided at the level of C4 or C5. It was shown by the method of Fink and Heimer that terminals of descending and ascending propriospinal pathways damaged by the second division are distributed in the gray matter ipsilaterally in the lateral zones of Rexed's laminase V–VII and also in the dorsolateral motor nuclei. An electron-microscopic study showed that the synapses of the degenerating terminals are mainly axo-dendritic in type and account for 14.5% of the total number of terminals counted. Residual synaptic vesicles in these terminals were spherical in shape. The mean diameter of the degenerating myelinated propriospinal fibers in the lateral funiculus was 10±3 µ. The results of this investigation were compared with those of electrophysiological investigations of the function of propriospinal neurons.  相似文献   

12.
13.
《Journal of Physiology》1998,92(1):37-42
Electrophysiological investigations of neurons of the C6 segment of the spinal cord were made in α-chloralose anesthetized animals. It was established in the experiments that a part of long descending propriospinal neurons originating in the sixth cervical segment (C6) that projected to sacral segments (S1/S2) gave off collateral branches at the level of the fourth lumbar segment (L4). Several types of neurons were distinguished according to the ipsilateral, contralateral or bilateral course of axons at the thoracic level as well as their lumbar or sacral projections. The cell bodies of 58 identified neurons were distributed in Rexed's laminae VII and VIII of the gray matter. Axons descended in lateral funiculi and their conduction velocities varied from 50 to 85 m/s. The existence of collaterals to various segments of the lumbosacral enlargement indicates that the same information conveyed by long descending propriospinal neurons can reach separate motor centers controlling various muscles of the hindlimbs.  相似文献   

14.
Primary afferent sprouting in the spinal cord was evaluated by comparing the central projection of horseradish peroxidase (HRP)-labeled sciatic nerve afferent axons in nonlesioned control rats, and in rats subjected to acute or chronic partial spinal hemisections as adults. The lesions were performed at various levels from T10 to L3, and removed supraspinal and varying amounts of descending propriospinal afferents to lumbar segments receiving the maximal sciatic projection. The hemisections typically involved all but the dorsal column, although in some cases a portion of the dorsal column, including the corticospinal tract, was also transected.

The distribution pattern and density of spinal HRP reaction product was not significantly different in experimental and control preparations in any segment below the lesion, regardless of the quantity of denervation, or the density of the normal sciatic projection in a given terminal region. These results, together with our previous finding concerning an absence of primary afferent sprouting following long-term dorsal root ganglionectomies, suggest that current concepts concerning collateral sprouting as a factor in functional plasticity in the mature mammalian spinal cord warrant re-evaluation.  相似文献   

15.
Cortico- and rubrospinal tracts play an important role in controlling voluntary movements. Transection of these tracts in different spinal cord layers gives different effects that may be explained by the influence of different spinal cord neuronal networks. The aim of the present work was to study the role of C3/C4 propriospinal system in movement control and processes of motor recovery. It was shown that propriospinal system C3/C4 play crucial role in motor recovery after lesion of cortico- and rubrospinal tracts in C5, whereas ventrally located tracts are important after the same lesion in C2. More over, propriospinal system C3/C4 can mediate the command for some voluntary movements in cats.  相似文献   

16.
Three isoforms of the alpha subunit of (Na,K)-ATPase have been identified in the rat central nervous system. Using a probe specific for the alpha 1 isoform, mRNA levels were measured from five sections of the rat spinal cord using slot blot techniques. Assigning a value of 1 to the slope obtained from the cervical section, the upper thoracic section was 2.6 times higher; the midthoracic section was 4.5 times higher; the lower thoracic section was 2.6 times higher; and the lumbar section was 1.7 times higher. The results suggest that alpha 1 isoform mRNA levels are not uniform throughout the spinal cord. In situ hybridization techniques showed that alpha 1 isoform mRNA was diffusely abundant in glial and central canal ependymal cells, while labeled neurons were localized exclusively in lateraily located anterior horn neurons in cervical, thoracic, and lumbar segments and in ventromedial neurons in mid-thoracic spinal cord. Also, dorsal root ganglia neurons were extensively labeled at all segments.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

17.
Fictitious scratching, i.e., rhythmic activity of hind-limb motoneurons at the characteristic scratching frequency, was evoked by tactile stimulation of the ear in thalamic cats immobilized with flaxedil. Activity of propriospinal neurons in segments C1, C2, and T4–T7 was recorded extracellularly. The neurons were identified by their antidromic response to stimulation of their axons in segment L1. Most neurons did not respond to stimulation of the ear. Some neurons, however, were activated during fictitious scratching. Neurons of the cervical segments responded not only to stimulation of the ear, but also to tactile stimulation of the forelimbs and also to passive movements of those limbs. Neurons of the thoracic segments were activated only by stimulation of the ipsilateral ear; these neurons were inhibited by stimulation of the contralateral ear. The role of the propriospinal neurons in the activation of the spinal mechanisms of scratching is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 504–511, September–October, 1977.  相似文献   

18.
A comparison was made between dimensions of vestibular neurons labeled with horseradish peroxidase projecting to the spinal cord and cells stained with neutral red not differentiated into vestibulospinal and not forming descending projections. The cells in nondifferentiated areas of descending, medial and lateral vestibular nuclei include neurons of all sizes. In the caudorostral direction of the vestibular complex, the number of small and average neurons decreased and the number of large and gigantic neurons increased. The vestibulospinal populations included cells of average, large and gigantic size, and large and gigantic neurons were dominant. In the caudorostral direction, neurons of various sizes were distributed relatively evenly without forming differentiated groups.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 616–624, September–October, 1991.  相似文献   

19.
The characteristics of conduction of the excitation wave along propriospinal fibers of the dorsolateral tract of the spinal cord were studied in cats anesthetized with pentobarbital. At a preliminary operation, 10–18 days beforehand, lateral hemisection of the spinal cord was performed, cranially in the lumbar division and caudally and cranially in the cervical division to the segments to be studied, leading to degeneration of the long descending and ascending fibers. During stimulation, the dorsolateral tract developed a composite response consisting of a positive-negative wave recorded up to 60–65 mm (4 or 5 segments) from the point of stimulation. The mean conduction velocity of this wave in the lumbar division was 37.9 m/sec compared with 44.5 m/sec in the cervical division. From its properties as a whole this wave can be regarded as the result of excitation of relatively fast-conducting propriospinal fibers of the dorsolateral tract. If the strength of stimulation was increased, late components began to appear in the response. These were evidently connected with excitation of thinner propriospinal fibers and synaptic activation of other other groups of spinal neurons.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 54–60, January–February, 1973.  相似文献   

20.
Summary The tail of the gymnotid Sternarchus albifrons, including the spinal cord, regenerates following amputation. Regenerated spinal cord shows a rostro-caudal gradient of differentiation. Cross sections of the most distal regenerated cord show radially enlarged ependymal cells, relatively undifferentiated cells, and numerous blood vessels. More anterior sections contain well differentiated electromotor neurons, glial cells, and myelinated axons. The number of electromotor-neuron cell bodies in cross sections of regenerated spinal cord is three to six times the number in nonregenerated cord. Distinct tracts of axons, easily identifiable in normal cord, are not distinguishable in cross sections of regenerated cord. Some reorganization of the spinal cord also appears to take place anterior to the site of transection.Individual electromotor neurons in the regenerated spinal cord have morphologies largely similar to those of normal electrocytes, i.e., cell bodies are rounded, lack dendrites, have synapses characterized by gap junctions with presynaptic axons, and lack an unmyelinated initial segment. The presence of electromotor neurons with normal morphology in regenerated spinal cord correlates with the re-establishment of relatively normal electrocyte axonSchwann cell relationships in the regenerating electric organ of this sternarchid.Supported in part by the Medical Research Service, Veterans Administration and by a grant from the National Institutes of Health. We also thank the Paralyzed Veterans of America for their support. We thank Mary E. Smith and Susan Cameron for excellent technical support  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号