首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.  相似文献   

2.
Epilepsy is a serious neurological disease that responds to two very different treatments involving lipids. Clinically, it responds to a state of ketosis induced by a very high-fat 'ketogenic' diet. Experimentally, in vitro and in vivo models demonstrate that injection or infusion of free (non-esterified) polyunsaturates such as arachidonate and docosahexaenoate also reduces seizure susceptibility. In our experience, rats on a very high-fat ketogenic diet not only have mild-to-moderate ketosis, but also have raised serum free fatty acids. Some polyunsaturates, particularly linoleate and alpha-linolenate, are relatively easily beta-oxidized and are therefore ketogenic. We conclude that raised levels of free plasma polyunsaturates could contribute to the beneficial effect of the ketogenic diet in refractory epilepsy not only by helping sustain ketosis, but also by their own direct (though poorly defined) antiseizure effects.  相似文献   

3.
Altered use of different dietary fatty acids may contribute to several chronic diseases, including obesity, noninsulin-dependent diabetes mellitus, and cardiovascular disease. However, few comparative data are available to support this link, so the goal of the present study was to compare the metabolism of [(13)C]oleate, [(13)C]alpha-linolenate, [(13)C]elaidate, and [(13)C]linoleate through oxidation and incorporation into plasma lipid fractions and adipose tissue. Each tracer was given as a single oral bolus to six healthy women. Samples were collected over 8 days, and (13)C was analyzed using isotope ratio mass spectrometry. At 9 h postdose, cumulative oxidation was similar for [(13)C]elaidate, [(13)C]oleate, and [(13)C]alpha-linolenate (19 +/- 1%, 20 +/- 4%, and 19 +/- 3% dose, respectively). Significantly lower oxidation of [(13)C]linoleate (12 +/- 4% dose; P < 0.05) was accompanied by its higher incorporation into plasma phospholipids and cholesteryl esters. Abdominal adipose tissue was enriched with [(13)C]alpha-linolenate, [(13)C]elaidate, or [(13)C]linoleate within 6 h. The percentage linoleate in plasma phospholipids correlated positively with [(13)C]linoleate and [(13)C]elaidate oxidation, indicating a potential role of background diet. Conversion of [(13)C]linoleate and [(13)C]alpha-linolenate to longer chain polyunsaturates was a quantitatively minor route of utilization.  相似文献   

4.
The term ‘essential fatty acid’ is ambiguous and inappropriately inclusive or exclusive of many polyunsaturated fatty acids. When applied most rigidly to linoleate and -linolenate, this term excludes the now well accepted but conditional dietary need for two long chain polyunsaturates (arachidonate and docosahexaenoate) during infancy. In addition, because of the concomitant absence of dietary -linolenate, essential fatty acid deficiency is a seriously flawed model that has probably led to significantly overestimating linoleate requirements. Linoleate and -linolenate are more rapidly β-oxidized and less easily replaced in tissue lipids than the common ‘non-essential’ fatty acids (palmitate, stearate, oleate). Carbon from linoleate and -linolenate is recycled into palmitate and cholesterol in amounts frequently exceeding that used to make long chain polyunsaturates. These observations represent several problems with the concept of ‘essential fatty acid’, a term that connotes a more protected and important fatty acid than those which can be made endogenously. The metabolism of essential and non-essential fatty acids is clearly much more interconnected than previously understood. Replacing the term ‘essential fatty acid’ by existing but less biased terminology, i.e. polyunsaturates, ω3 or ω6 polyunsaturates, or naming the individual fatty acid(s) in question, would improve clarity and would potentially promote broader exploration of the functional and health attributes of polyunsaturated fatty acids.  相似文献   

5.
Abstract: Polyunsaturated fatty acids are needed for normal neonatal brain development, but the degree of conversion of the 18-carbon polyunsaturated fatty acid precursors consumed in the diet to their respective 20-and 22-carbon polyunsaturates accumulating in the brain is not well known. In the present study, in vivo 13C nuclear magnetic resonance spectroscopy was used to monitor noninvasively the brain uptake and metabolism of a mixture of uniformly 13C-enriched 16-and 18-carbon polyunsaturated fatty acid methyl esters injected intragastrically into neonatal rats. In vivo NMR spectra of the rat brain at postnatal days 10 and 17 had larger fatty acid signals than in uninjected controls, but changes in levels of individual fatty acids could not be distinguished. One day after injection of the U-13C-polyunsaturated fatty acid mixture, 13C enrichment (measured by isotope ratio mass spectrometry) was similar in brain phospholipids, free fatty acids, free cholesterol, and brain aqueous extract; 13C enrichment remained high in the phospholipids and cholesterol for 15 days. 13C enrichment was similar in the main fatty acids of the brain within 1 day of injection but 15 days later had declined in all except arachidonic acid while continuing to increase in docosahexaenoic acid. These changes in 13C enrichment in brain fatty acids paralleled the developmental changes in brain fatty acid composition. We conclude that, in the neonatal rat brain, dietary 16-and 18-carbon polyunsaturates are not only elongated and desaturated but are also utilized for de novo synthesis of long-chain saturated and monounsaturated fatty acids and cholesterol.  相似文献   

6.
LIPID COMPOSITION OF OPTIC NERVE MYELIN   总被引:1,自引:0,他引:1  
Abstract— Myelin was isolated from bovine optic nerves by differential ultracentrifugation and its lipid composition was analysed. Optic nerve myelin contained 76·3 per cent lipid. The major lipids were cholesterol, ethanolamine glycerophosphatides (EGP) and cerebroside. Serine glycerophosphatides (SGP), sphingomyelin and cerebroside sulphate were present in smaller proportions. EGP and SGP contained 34·6 and 0·5 per cent aldehydes. The major fatty aldehydes were palmitaldehyde, stearaldehyde and octadecenaldehyde. The fatty acids of EGP, SGP and choline glycerophosphatides (CGP) were chiefly 16:0, 18:0 and 18:1, with small proportions of 20 and 22 carbon polyunsaturates. The sphingolipids contained predominantly saturated and monounsaturated fatty acids of chain lengths of 20–26 carbon atoms. Optic nerve myelin and white matter myelin resembled one another closely in overall lipid composition and in the fatty acid compositions of their constituent lipids. Optic nerve myelin and white matter myelin are chemically similar membranes, but both of these differ in their lipid composition from spinal root myelin.  相似文献   

7.
We examined the effect of dietary alpha-linolenate (18:3n-3)/linoleate (18:2n-6) balance on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production in mouse macrophages. Resident and casein-induced peritoneal macrophages from mice fed a high alpha-linolenate diet produced a higher amount of TNF than in the high linoleate diet group. However, TNF production was not affected by the dietary alpha-linolenate/linoleate balance when thioglycollate- and complete Freund's adjuvant-induced macrophages were stimulated with LPS. Serum TNF levels of mice intraperitoneally injected with LPS was also higher in the high alpha-linolenate group than in the high linoleate group. These diets affected the n-3/n-6 ratios of 20 and 22 carbon highly unsaturated fatty acids in macrophage lipids. Thus, the dietary enrichment with alpha-linolenate was found to enhance TNF production of macrophages isolated under limited conditions.  相似文献   

8.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

9.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

10.
In the past 2 million years, the hominid lineage leading to modern humans evolved significantly larger and more sophisticated brains than other primates. We propose that the modern human brain was a product of having first evolved fat babies. Hence, the fattest (infants) became, mentally, the fittest adults. Human babies have brains and body fat each contributing to 11-14% of body weight, a situation which appears to be unique amongst terrestrial animals. Body fat in human babies provides three forms of insurance for brain development that are not available to other land-based species: (1) a large fuel store in the form of fatty acids in triglycerides; (2) the fatty acid precursors to ketone bodies which are key substrates for brain lipid synthesis; and (3) a store of long chain polyunsaturated fatty acids, particularly docosahexaenoic acid, needed for normal brain development. The triple combination of high fuel demands, inability to import cholesterol or saturated fatty acids, and dependence on docosahexaenoic acid puts the mammalian brain in a uniquely difficult situation compared with other organs and makes its expansion in early humans all the more remarkable. We believe that fresh- and salt-water shorelines provided a uniquely rich, abundant and accessible food supply, and the only viable environment for evolving both body fat and larger brains in human infants.  相似文献   

11.
This report summarizes our recent studies on the protein known as sterol carrier protein (SCP) or fatty acid binding protein (FABP). SCP is a highly abundant, ubiquitous protein with multifunctional roles in the regulation of lipid metabolism and transport. SCP in vitro activates membrane-bound enzymes catalyzing cholesterol synthesis and metabolism, as well as those catalyzing long chain fatty acid metabolism. SCP also binds cholesterol and fatty acids with high affinity and rapidly penetrates cholesterol containing model membranes. Studies in vivo showed SCP undergoes a remarkable diurnal cycle in level and synthesis, induced by hormones and regulated in liver by translational events. SCP rapidly responds in vivo to physiological events and manipulations affecting lipid metabolism by changes in level. Thus SCP appears to be an important regulator of lipid metabolism. Preliminary evidence is presented that SCP is secreted by liver and intestine into blood and then taken up by tissues requiring SCP but incapable of adequate SCP synthesis.  相似文献   

12.
1. Although isolated spinach chloroplasts were almost entirely (greater than 99%) dependent on light for fatty acid synthesis, leaf discs were capable of fatty acid synthesis in the dark (up to 500nmol of 3H/h per mg of chlorophyll equivalent to approx. 400nmol of carbon/h per mg of chlorophyll), which represented 12-20% of the corresponding 'light rates'. 2. Net fatty acid accumulation by greening maize leaves occurred largely or entirely during the light period. 3. There was a diurnal fluctuation in the proportions of C18 unsaturated fatty acids in the lipids of developing spinach leaves, where an increase in the concentration of oleate during the day and a subsequent decline at night was observed; a complementary change occurred in the concentration of alpha-linolenate. The rhythm is interpreted as reflecting the continuation of oleate and linoleate desaturation at high rates when oleate synthesis is markedly decreased at night. 4. Changes in the fatty acid composition of 3-sn-phosphatidylcholine accounted for at least 60% of the total decrease in oleate over the dark period. This result is consistent with suggestions that this lipid is the substrate for the leaf microsomal oleate desaturase and an intermediate in leaf glycerolipid biosynthesis.  相似文献   

13.
Spontaneously hypertensive rats (SHR) and normotensive control, Wistar/Kyoto (WKY) rats through two generations were fed a semipurified diet supplemented either with safflower oil (rich in linoleate) or with perilla oil (rich in alpha-linolenate). The cerebral lipid contents and phospholipid compositions did not differ between the two dietary groups of SHR rats. There were also no differences in the unsaturated/saturated ratios of individual phospholipids or the proportions of plasma-logens. However, the proportions of (n-3) and (n-6) fatty acids were significantly different. Decreases in the proportions of docosahexaenoate [22:6 (n-3)] in phosphatidylethanolamine and phosphatidylserine in the safflower oil group were compensated for with increases in the proportions of docosatetraenoic [22:4 (n-6)] and docosapentaenoic [22:5 (n-6)] acids as compared with the perilla oil group. These differences in phospholipid acyl chains were much smaller than the difference in the proportions of linoleate and alpha-linolenate of the diets. In a brightness-discrimination learning test, the total number of responses to the positive and negative stimuli were less in the groups fed perilla oil. However, the alpha-linolenate-deficient group took longer to decrease the frequency of R- responses and therefore longer to learn the discrimination. Consequently, the correct response ratios were higher in the perilla oil groups than in the safflower oil groups. Thus, the dietary alpha-linolenate/linoleate balance influenced the (n-3)/(n-6) balance of polyenoic fatty acids differently among brain phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PELIZAEUS-MERZBACHER DISEASE: BRAIN LIPID AND FATTY ACID COMPOSITION   总被引:2,自引:2,他引:0  
Abstract— Biochemical analysis of the leukodystrophy brain from a case of Pelizaeus-Merzbacher disease, classical type, was performed. A decrease in the amount of solid material present was found. The lyophilized brain weight was reduced to 76% of normal with a slightly greater decrease in the amount of extractable lipid. Total myelin was diminished to 7% of normal. Among specific lipids plasmalogens were present in slightly lowered amounts. Cerebrosides and sulphatides were drastically reduced to 8% of normal, whereas sphingomyelin was less severely affected. Fatty acids from phospholipids were close to normal, only enols being slightly diminished. Analysis of pure cerebrosides and sulphatides revealed that the a-hydroxylated compounds as well as very long chain fatty acids (over C18, especially C23 to C26) were greatly reduced. For chain lengths over C18, the ratio of leukodystrophy fatty acid to normal fatty acid was close to 10%. The defect in very long chain fatty acids is estimated at 99.2% in total brain.
Thus, we have found a marked decrease in the amount of very long chain fatty acids and a less marked decrease in sphingolipids. The reduced amount of these acids appears to be partially offset by an increase in the amount of medium-chain fatty acids in sphingolipids. We conclude that one aspect of Pelizaeus-Merzbacher disease may be a defect in the synthesis of myelin very long chain fatty acids (as these acids are far much reduced than any other myelin molecule).  相似文献   

15.
16.
Anorexia nervosa is a model of simple starvation accompanied by secondary hyperlipoproteinemia. The pattern of plasma fatty acids influences the levels of plasma lipids and lipoproteins. The concentration of plasma lathosterol is a surrogate marker of cholesterol synthesis de novo, concentrations of campesterol and beta-sitosterol reflect resorption of exogenous cholesterol. The aim of the study was to evaluate fatty acids in plasma lipid classes and their relationship to plasma lipids, lipoproteins, cholesterol precursors and plant sterols. We examined 16 women with anorexia nervosa and 25 healthy ones. Patients with anorexia nervosa revealed increased concentrations of total cholesterol, triglycerides, HDL-cholesterol, campesterol and beta-sitosterol. Moreover, a decreased content of n-6 polyunsaturated fatty acids was found in all lipid classes. These changes were compensated by an increased content of monounsaturated fatty acids in cholesteryl esters, saturated fatty acids in triglycerides and both monounsaturated and saturated fatty acids in phosphatidylcholine. The most consistent finding in the fatty acid pattern concerned a decreased content of linoleic acid and a raised content of palmitoleic acid in all lipid classes. The changes of plasma lipids and lipoproteins in anorexia nervosa are the result of complex mechanisms including decreased catabolism of triglyceride-rich lipoproteins, normal rate of cholesterol synthesis and increased resorption of exogenous cholesterol.  相似文献   

17.
Abstract: Docosahexaenoate is important for normal neural development. It can be derived from α-linolenate, but carbon from α-linolenate is also recycled into de novo lipid synthesis. The objective of this study was to quantify the amount of α-linolenate used to produce docosahexaenoate versus lipids synthesized de novo that accumulate in the brain of the developing rat. A physiological dose of carbon-13-labeled α-linolenate was injected into the stomachs of mother-reared 6-day-old rat pups. Total lipids of brain, liver, and gut were extracted from rats killed 3 h to 30 days after dosing. Carbon-13 enrichment was determined by isotope ratio mass spectrometry. Carbon-13-enriched α-linolenate was not detected in the brain at any time point, and its levels in liver and gut exceeded detection limits at most time points, so tracer mass was quantified mainly for three end products—docosahexaenoate, palmitate, and cholesterol. Carbon-13-enriched cholesterol, palmitate, docosahexaenoate, and water-soluble metabolites were detected in brain, liver, and gut. Enrichment (in micrograms of carbon-13 per organ) in brain cholesterol exceeded that in brain docosahexaenoate by four- to 16-fold over the duration of the study. Enrichment in brain palmitate exceeded that in brain docosahexaenoate by three- to 30-fold over the first 8 days of the study. These results indicate that carbon from α-linolenate is not exclusively conserved for synthesis of longer n-3 polyunsaturates but is a readily accessible carbon source for de novo lipogenesis during early brain development in the suckling rat. Owing to a high rate of β-oxidation and carbon recycling, dependence on α-linolenate as the sole source of docosahexaenoate may incur a potential risk of providing insufficient docosahexaenoate for the developing brain.  相似文献   

18.
Compared with classic essential fatty acid deficiency or the feeding of a fat-free diet, little is known about specific linoleate deficiency in the rat. Carbon recycling into de novo lipogenesis has been reported to be an obligatory feature of linoleate metabolism in the liver, even in extreme linoleate deficiency (LA-D). The present study had two objectives: 1) to report a brief summary of the tissue n-6 polyunsaturated fatty acid (PUFA) profiles in specific LA-D, and 2) to quantify whole body carbon recycling from [(14)C]linoleate in specific LA-D. Rats consumed a linoleate-deficient diet for 12 weeks and then received a bolus of [1-(14)C]linoleate by gavage. In linoleate-deficient rats, the triene/tetraene ratio in several organs increased by 18- to 100-fold. The amount of (14)C appearing in organ sterols (dpm/g) of linoleate-deficient rats was 2- to 10-fold higher than in the controls and equaled 16.3% of the [(14)C]linoleate dose given, compared with 7.4% in the controls. We conclude that a similar amount (about 10%) of the carbon skeleton of linoleate is normally recycled into lipids synthesized de novo, as remains in the whole body pool of n-6 polyunsaturates.  相似文献   

19.
The maintenance of optimal cognitive function is a central feature of healthy aging. Impairment in brain glucose uptake is common in aging associated cognitive deterioration, but little is known of how this problem arises or whether it can be corrected or bypassed. Several aspects of the challenge to providing the brain with an adequate supply of fuel during aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, especially docosahexaenoic acid (DHA), is becoming increasingly associated with several forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level seems to be an important regulator of brain glucose uptake, possibly by affecting the activity of some but not all the glucose transporters. DHA synthesis from either alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether these DHA precursors are likely to be helpful in maintaining cognition during aging. We speculate that ALA and EPA may well have useful supporting roles in maintaining brain function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass problems of impaired glucose access to the brain during aging. Hence, it may be time to consider whether the main omega-3 fatty acids have distinct but complementary roles in brain function.  相似文献   

20.
Paramecium requires oleic acid for growth and can grow in media containing no other fatty acids. In the present study, we have shown that this ciliate utilized oleate mainly as a carbon and energy source, even though this fatty acid was the only substrate available for synthesis of polyunsaturated fatty acids. Culture growth was inhibited by the addition of the drug triparanol. Triparanol decreased the formation of polyunsaturated fatty acids from oleate by preventing desaturation to form the dienoic acid, linoleate. Triparanol inhibition resulted in an altered phospholipid fatty acyl composition, an increased fragility and an altered behavioral response of the cells to a depolarizing stimulation solution. Therefore, although most of the dietary oleate was not used by the cells for polyunsaturated fatty acid synthesis, the desaturation of oleic acid was critical for normal culture growth, cell integrity and swimming behavior, all of which are expected to be dependent on normal membrane lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号