首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.  相似文献   

2.
We investigated the regulation of Hsp27 phosphorylation by protein kinase C δ (PKCδ) during etoposide-induced apoptosis. The phosphorylation of Hsp27 at Ser78 was temporally correlated with the proteolytic activation of PKCδ during apoptosis. Hsp27 phosphorylation was dependent on the activity of PKCδ since treatment with rottlerin, a chemical inhibitor of PKCδ, or overexpression of a PKCδ dominant negative mutant abolished the phosphorylation. In addition, recombinant PKCδ phosphorylated Hsp27 at Ser78 in vitro. Moreover, caspase-3 was specifically activated following Hsp27 phosphorylation at Ser78. Pull-down assays using a phosphomimetic Hsp27 mutant revealed that binding between Hsp27 and cytochrome c was abolished by the phosphorylation. These results suggest that Hsp27 dissociates from cytochrome c following PKCδ-mediated phosphorylation at Ser78, which allows formation of the apoptosome and stimulates apoptotic progression.  相似文献   

3.
We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b(5) in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.  相似文献   

4.
Protein kinase C (PKC) δ plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKCδ generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKCδ isoform named PKCδIX (Genebank Accession No. HQ840432). PKCδIX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKCδ. PKCδIX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKCδIX provided a possibility that this PKCδ isozyme functions as a novel dominant-negative form for PKCδ due to its lack of the ATP-binding domain that is required for the kinase activity of PKCδ. Indeed, overexpression of PKCδIX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKCδIX protein could competitively inhibit the kinase activity of PKCδ. We conclude that PKCδIX can function as a natural dominant-negative inhibitor of PKCδ in vivo.  相似文献   

5.
1. The EPR signal in the g = 2 region of the reduced QH2: cytochrome c oxidoreductase as present in submitochondrial particles and the isolated enzyme is an overlap of two signals in a 1 : 1 weighted ratio. Both signals are due to [2Fe-2S]+1 centers. 2. From the signal intensity it is computed that the concentration of each Fe-S center is half that of cytochrome c1. 3. The line shape of one of the Fe-S centers, defined as center 1, is reversibly dependent on the redox state of the b-c1 complex. The change of the line shape cannot be correlated with changes of the redox state of any of the cytochromes in QH2: cytochrome c oxidoreductase. 4. Lie the optical spectrum, the EPR spectrum of the cytochromes is composed of the absorption of at least three different b cytochromes and cytochrome c1. 5. The molar ratio of the prosthetic groups was found to be c1 : b-562 : b-566 : b-558 : center 1 : center 2 = 2 : 2 : 1 : 1 : 1 : 1. The consequences of this stoichiometry are discussed in relation to the basic enzymic unit of QH2 : cytochrome c oxidoreductase.  相似文献   

6.
Cytochrome c6from the unicellular green alga Scenedesmus obliquus was sequenced, crystallized in its reduced and oxidized state and the three-dimensional structure of the protein in both redox states was determined by X-ray crystallography. Reduced cytochrome c6crystallized as a monomer in the space group P 21212, whereas the oxidized protein crystallized as a dimer in the space group P 3121. The structures were solved by molecular replacement and refined to 1. 9 and 2.0 A, respectively.Comparison of the structures of both redox states revealed only slight differences on the protein surface, whereas a distortion along the axis between the heme iron and its coordinating Met61 residue was observed. No redox-dependent movement of internal water molecules could be detected. The high degree of similarity of the surfaces and charge distributions of both redox states, as well as the dimerization of cytochrome c6as observed in the oxidized crystal, is discussed with respect to its biological relevance and its implications for the reaction mechanisms between cytochrome c6and its redox partners. The dimer of oxidized cytochrome c6may represent a molecular structure occurring in a binary complex with cytochrome b6f. This assembly might be required for the correct orientation of cytochrome c6with respect to its redox partner cytochrome b6f, facilitating the electron transfer within the complex. If the dimerization is not redox-dependent in vivo, the almost identical surfaces of both redox states do not support a long range differentiation between reduced and oxidized cyt c6, i.e. a random collision model for the formation of an electron transfer complex must be assumed.  相似文献   

7.
The electrochemical analysis of cytochrome P450 3A4 catalytic activity has shown that vitamins C, A and E influence reduction of cytochrome P450 3A4. These data suggest a possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome P450 3A4, during complex therapy of patients. These vitamins demonstrate antioxidant properties that lead to the increase of the cathodic current corresponding to heme reduction of this functionally significant hemoprotein. Ascorbic acid (0.028–0.56 mM) stimulated the cathodic peak (an electrochemical signal) of cytochrome P450 3A4. In the presence of diclofenac (Voltaren), a typical substrate of cytochrome P450 3A4, the increase in the catalytic current suggesting electrocatalysis and stimulating action of ascorbic acid was observed. In the presence of vitamins A and E the dose-dependent increase in the catalytic current of cytochrome P450 3A4 was observed in the range of vitamin concentrations from 10 to 100 μM. The maximal increase of 229 ± 20 and 162 ± 10% was observed at 100 μM vitamin A and vitamin E, respectively. In contrast to vitamin A, vitamin E in the presence of the cytochrome P450 inhibitor itraconazole did not increase the catalytic current. The latter implies existence of some substrate properties in vitamin E. The electrochemical approach for the analysis of catalytic activity of cytochrome P450 3A4 and studies of the effect of biologically active compounds on electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (up to 10–15 mol/electrode), to carry out the analysis without involvement of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.  相似文献   

8.
Protein kinase C δ (PKCδ) modulates cell survival and apoptosis in diverse cellular systems. We recently reported that PKCδ functions as a critical anti-apoptotic signal transducer in cells containing activated p21Ras and results in the activation of AKT, thereby promoting cell survival. How PKCδ is regulated by p21Ras, however, remains incompletely understood. In this study, we show that PKCδ, as a transducer of anti-apoptotic signals, is activated by phosphotidylinositol 3′ kinase/phosphoinositide-dependent kinase 1 (PI3K–PDK1) to deliver the survival signal to Akt in the environment of activated p21Ras. PDK1 is upregulated in cells containing an activated p21Ras. Knock-down of PDK1, PKCδ, or AKT forces cells containing activated p21Ras to undergo apoptosis. PDK1 regulates PKCδ activity, and constitutive expression of PDK1 increases PKCδ activity in different cell types. Conversely, expression of a kinase-dead (dominant-negative) PDK1 significantly suppresses PKCδ activity. p21Ras-mediated survival signaling is therefore regulated by via a PI3K–AKT pathway, which is dependent upon both PDK1 and PKCδ, and PDK1 activates and regulates PKCδ to determine the fate of cells containing a mutated, activated p21Ras.  相似文献   

9.
We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli-compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 A resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629-644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli.  相似文献   

10.
Submitochondrial particles isolated from Tetrahymena pyriformis contain essentially the same redox carriers as those present in parental mitochondria: at pH 7.2 and 22 degree C there are two b-type pigments with half-reduction potentials of --0.04 and --0.17 V, a c-type cytochrome with a half reduction potential of 0.215 V, and a two-component cytochrome a2 with Em7.2 of 0.245 and 0.345 V. EPR spectra of the aerobic submitochondrial particles in the absence of substrate show the presence of low spine ferric hemes with g values at 3.4 and 3.0, a high spin ferric heme with g =6, and a g=2.0 signal characteristic of oxidized copper. In the reduced submitochondrial particles signals of various iron-sulfur centers are observed. Cytochrome c553 is lost from mitochondria during preparation of the submitochondrial particles. The partially purified cytochrome c553 is a negatively charged protein at neutral pH with an Em7.2 of 0.25 V which binds to the cytochrome c-depleted Tetrahymena mitochondria in the amount of 0.5 nmol/mg protein with KD of 0.8.10(-6) M. Reduced cytochrome c553 serves as an efficient substrate in the reaction with its own oxidase. The EPR spectrum of the partially purified cytochrome c553 shows the presence of a low spin ferric heme with the dominant resonance signal at g=3.28. A pigment with an alpha absorption maximum at 560 nm can be solubilized from the Tetrahymena cells with butanol. This pigments has a molecular weight of approx. 18 000, and Em7.2 of--0.17 V and exhibits a high spin ferric heme signal at g=6.  相似文献   

11.
Protein kinase C signaling and oxidative stress   总被引:32,自引:0,他引:32  
Oxidative stress is involved in the pathogenesis of various degenerative diseases including cancer. It is now recognized that low levels of oxidants can modify cell-signaling proteins and that these modifications have functional consequences. Identifying the target proteins for redox modification is key to understanding how oxidants mediate pathological processes such as tumor promotion. These proteins are also likely to be important targets for chemopreventive antioxidants, which are known to block signaling induced by oxidants and to induce their own actions. Various antioxidant preventive agents also inhibit PKC-dependent cellular responses. Therefore, PKC is a logical candidate for redox modification by oxidants and antioxidants that may in part determine their cancer-promoting and anticancer activities, respectively. PKCs contain unique structural features that are susceptible to oxidative modification. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are readily oxidized by peroxide. When oxidized, the autoinhibitory function of the regulatory domain is compromised and, consequently, cellular PKC activity is stimulated. The C-terminal catalytic domain contains several reactive cysteines that are targets for various chemopreventive antioxidants such as selenocompounds, polyphenolic agents such as curcumin, and vitamin E analogues. Modification of these cysteines decreases cellular PKC activity. Thus the two domains of PKC respond differently to two different type of agents: oxidants selectively react with the regulatory domain, stimulate cellular PKC, and signal for tumor promotion and cell growth. In contrast, antioxidant chemopreventive agents react with the catalytic domain, inhibit cellular PKC activity, and thus interfere with the action of tumor promoters.  相似文献   

12.
A cytochrome in an extremely halophilic archaeon, Haloferax volcanii, was purified to homogeneity. This protein displayed a redox difference spectrum that is characteristic of a-type cytochromes and a CN(-) complex spectrum that indicates the presence of heme a and heme a(3). This cytochrome aa(3) consisted of 44- and 35-kDa subunits. The amino acid sequence of the 44-kDa subunit was similar to that of the heme-copper oxidase subunit I, and critical amino acid residues for metal binding, such as histidines, were highly conserved. The reduced cytochrome c partially purified from the bacterial membrane fraction was oxidized by the cytochrome aa(3), providing physiological evidence for electron transfer from cytochrome c to cytochrome aa(3) in archaea.  相似文献   

13.
Insulin signaling pathways in the brain regulate food uptake and memory and learning. Insulin and protein kinase C (PKC) pathways are integrated and function closely together. PKC activation in the brain is essential for learning and neuronal repair. Intranasal delivery of insulin to the central nervous system (CNS) has been shown to improve memory, reduce cerebral atrophy, and reverse neurodegeneration. However, the neuronal molecular mechanisms of these effects have not been studied in depth. PKCδ plays a central role in cell survival. Its splice variants, PKCδI and PKCδII, are switches that determine cell survival and fate. PKCδI promotes apoptosis, whereas PKCδII promotes survival. Here, we demonstrate that insulin promotes alternative splicing of PKCδII isoform in HT22 cells. The expression of PKCδI splice variant remains unchanged. Insulin increases PKCδII alternative splicing via the PI3K pathway. We further demonstrate that Akt kinase mediates phosphorylation of the splicing factor SC35 to promote PKCδII alternative splicing. Using overexpression and knockdown assays, we demonstrate that insulin increases expression of Bcl2 and bcl-xL via PKCδII. We demonstrate increased cell proliferation and increased BrdU incorporation in insulin-treated cells as well as in HT22 cells overexpressing PKCδII. Finally, we demonstrate in vivo that intranasal insulin promotes cognitive function in mice with concomitant increases in PKCδII expression in the hippocampus. This is the first report of insulin, generally considered a growth or metabolic hormone, regulating the alternative isoform expression of a key signaling kinase in neuronal cells such that it results in increased neuronal survival.  相似文献   

14.
A c-type monoheme ferricytochrome c550 (9.6 kDa) was isolated from cells of Bacillus halodenitrificans sp.nov., grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination. The midpoint redox potential was determined at several pH values by visible spectroscopy. The redox potential at pH 7.6 is 138 mV. When studied by 1H-NMR spectroscopy as a function of pH, the spectrum shows a pH dependence with pKa values of 6.0 and 11.0. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c550. The first pKa is probably associated with protonation of the propionate groups. The second pKa value introduces a larger effect in the 1H-NMR spectrum and is probably due to the ionisation of the axial histidine. Studies of temperature variation of the 1H-NMR spectra for both the ferrous and ferri forms of the cytochrome were performed. Heme meso protons, the heme methyl groups, the thioether protons, two protons from a propionate and the methylene protons from the axial methionine were identified in the reduced form. The heme methyl resonances of the ferri form were also assigned. EPR spectroscopy was also used to probe the ferric heme environment. A signal at gmax approximately 3.5 at pH 7.5 was observed indicating an almost axial heme environment. At higher pH values the signal at gmax approximately 3.5 converts mainly to a signal at g approximately 2.96. The pKa associated with this change is around 11.3. The N-terminal sequence of this cytochrome was determined and compared with known amino acid sequences of other cytochromes.  相似文献   

15.
16.
17.
The molecular mechanism whereby protein kinase C (PKC) molecules transduce signals into the cell nucleus is unknown. In this study, we provide evidence that Dictyostelium discoideum contains PKCδ-like protein that is localized in the nucleus. The Dictyostelium PKCδ-like protein has an apparent molecular mass of 76 kDa. This protein is already highly expressed in vegetative Dictyostelium cells. The expression level remained constant up to 12 h of development, and sharply decreased after 16 h. The PKCδ-like protein is phosphorylated in vivo in response to cAMP and phorbol ester stimulation. Immunofluorescent studies, as well as subcellular fractionation experiments, have indicated that Dictyostelium PKCδ-like protein is permanently located in the nucleus. Our results may indicate that PKCδ-like protein in Dictyostelium functions as a link between cAMP and the tumor-promoting phorbol esters, and events that take place in the nucleus.  相似文献   

18.
1) Cells of Saccharomyces cerevisiae have been analysed by single and double-bean spectroscopy. Evidence is given for two components of cytochrome c oxidase in the alpha-region of their absorption spectrum. A rapidly reduceable component with a maximum at 600 nm and a slowly reduceable component with a maximum at 604 nm contribute about equal amounts to the total alpha-absorption of cytochrome c oxidase. 2) The component absorbing at 600 nm was identified as the high-potential component with a redox potential of 340 - 355mV, and the 604-nm component as the low-potential component of cytochrome c oxidase with redox potential of 180 - 190 mV. 3) Both components can be characterized by analysing the reduction kinetics in the presence of carbon monoxide. In the presence of saturating concentrations of carbon monoxide, an oxygen pulse leads to a rapid oxidation and subsequent reduction of cytochrome c oxidase, but the rapid reduction phase at 600 nm completely disappears, demonstrating its identity with cytochrome a3, which, being liganded by carbon monoxide in its reduced state, cannot react any more. The component which becomes oxidized and later reduced in the presence of carbon monoxide -- by definition cytochrome a -- has an absorption maximum at 604 nm. 4) The total extinction change at 604 nm in the presence of carbon monoxide is nearly as high as in its absence, but the reduction occurs in two phases and only the second phase, which contributes 50 - 60% to the total absorbance, corresponds in redox potential and kinetic properties to cytochrome a. Because the redox potential of the first reduction phase is very close to that of the low-potential copper atom of cytochrome c oxidase, it is concluded that the apparent increase in the extinction coefficient of cytochrome a in the presence of carbon monoxide is the result of a strong interaction between the ligand fields of cytochrome a and copper, induced by the binding of carbon monoxide to reduced cytochrome a3.  相似文献   

19.
Self-assembled monolayers of thiolated compounds are used as promoters for protein-electrode reactions. They provide an anchor group based on thiol chemisorptions and also a functional group for effective interaction with the protein. These interactions are often governed by electrostatic attraction. For example, for positively charged proteins, such as cytochrome c and the selenoprotein glutathione peroxidase, mercaptoalkanoic acids have been used. Clay modification of the electrode surface has been found to facilitate the heterogeneous electron transfer process for heme proteins, e.g. cytochrome c, cytochrome P450 and myoglobin. Interestingly, nucleic acids at carbon electrodes and thiol-modified double stranded oligonucleotides act as promoters of the redox communication to proteins, whereas the mechanism is still subject to controversy interpretations. By interacting the protein immobilised at the electrode with species in solution, signal chains have been constructed. The interaction can result in a simple co-ordination or redox reaction, depending on the nature of the reaction partners. For analytical purposes, e.g. biosensors, the electrochemical redox conversion of the immobilised protein is evaluated.  相似文献   

20.
Complexity in the redox titration of the dihaem cytochrome c4   总被引:1,自引:0,他引:1  
Redox titration of the dihaem, two domain cytochromes c4 from Pseudomonas aeruginosa, Pseudomonas stutzeri and Azotobacter vinelandii showed complex behaviour indicative of the presence of two redox components. In the case of the P. stutzeri cytochrome c4, two spectroscopically distinct components were present during the redox titration. In contrast, cytochrome c-554(548) from a halophilic Paracoccus species is a stable dimer of a monohaem cytochrome which shows close homology to cytochrome c4, but does not show complexity in its redox titration. The presence of chemically distinct haem environments or anti-cooperative interactions between identical haem groups are two possible explanations for the redox complexity of cytochrome c4. The simple redox titration of cytochrome c-554(548) shows that haems situated relatively close together need not interact, but direct cleavage, separation and study of the domains will be necessary to decide whether they do or do not interact in the case of cytochrome c4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号