首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agriculture faces serious problems in feeding 9 billion people by 2050: production must be increased and ecosystem services maintained under conditions for growing crops that are predicted to worsen in many parts of the world. A proposed solution is sustainable intensification of agriculture, whereby yields are increased on land that is currently cultivated, so sparing land to deliver other ecosystem services. Genetically modified (GM) crops are already contributing to sustainable intensification through higher yields and lower environmental impacts, and have potential to deliver further significant improvements. Despite their widespread successful use elsewhere, the European Union (EU) has been slow to introduce GM crops: decisions on applications to import GM commodities are lengthy, and decision-making on applications to cultivate GM crops has virtually ceased. Delayed import approvals result in economic losses, particularly in the EU itself as a result of higher commodity prices. Failure to grant cultivation approvals costs EU farmers opportunities to reduce inputs, and results in loss of agricultural research and development from the EU to countries such as the United States and China. Delayed decision-making in the EU ostensibly results from scientific uncertainty about the effects of using GM crops; however, scientific uncertainty may be a means to justify a political decision to restrict cultivation of GM crops in the EU. The problems associated with delayed decision-making will not improve until there is clarity about the EU's agricultural policy objectives, and whether the use of GM crops will be permitted to contribute to achieving those objectives.  相似文献   

2.
Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.  相似文献   

3.
Efforts by the EU to improve its regulatory framework for importing GM food and feed have done nothing to make the process easier and more predictable for applicants. Subject Categories: Biotechnology & Synthetic Biology, Economics, Law & Politics, Plant Biology

The first genetically modified (GM) crops were introduced more than two decades ago and have been planted globally on more than 190 million hectares (ISAAA, 2020), a surface area larger than all the arable land in the EU. Thousands of risk assessments have consistently concluded that they are as safe as conventional crops in regard to human and animal health (Smyth et al, 2021) and many countries have been growing GM crops for years. Despite political commitments to innovation and investments into research (EC, 2010), the EU is still lagging behind in adopting this technology on a wider scale owing to diverging views among its member states, the European Commission (EC) and the European parliament. Various attempts to resolve this tension by legal and regulatory means have created the most cumbersome and byzantine regulatory system for GM crops in the world. The Implementing Regulation (EU) No 503/2013, meant to ease the regulatory process, has made things even more complicated.
Various attempts to resolve this tension by legal and regulatory means have created the most cumbersome and byzantine regulatory system for GM crops in the world.
A major conundrum for the EU is the need to import large quantities of protein‐rich crops such as soybean to supply the continent’s livestock industry with high‐quality feed.In the light of the current Russia–Ukraine situation, which has added a layer of instability to already tense markets, the importance of the global agricultural market to ensure food security is even more pronounced.Given the high adoption rate of GM crops outside the EU, most of these imported commodities inevitably contain GM crops. Under EU law, food and feed products that contain or were produced from GM crops need an import authorisation by the European Commission (EC), which is a lengthy, costly and unpredictable process.In 2002, the EU set up a centralised review system under Regulation (EC) 178/2002 (the General Food Law Regulation) and an independent scientific body to conduct this review: the European Food Safety Authority (EFSA). EFSA is responsible for performing the risk assessment for food and feed regulated products, including GM crops; their advice “opinion” is used by the EC to draft a decision whether or not to authorise import. EU member states then vote whether or not to follow the EC’s draft decision. To date, not a single GM product has received a qualified majority decision for authorisation. The EC then makes the final decision based on EFSA’s risk assessment.There are many reasons why the member states disagree, mostly owing to political and economic agendas. Some members with a large and important agri‐food sector tend to vote in line with EFSA’s opinions, while others consistently vote against authorisation or abstain their vote mainly for political reasons. This ongoing disagreement has made it very difficult to establish an EU‐wide policy for agricultural biotechnology.
…the continuous proliferation, update and reinterpretation of EU requirements means that studies that were conducted in compliance with the guidelines at a particular time may no longer comply with changed requirements…
  相似文献   

4.
European Union Commissioner for the Environment Stavros Dimas recently hailed 'upgraded' non-genetically modified (GM) crops as an alternative to GM crops. A comparative analysis of the environmental risks associated with such non-GM herbicide-resistant crops and GM herbicide-resistant crops is presented here. The analysis highlights serious weaknesses in the European Union (EU) regulatory framework, and the contradictory policy of the EU Commission on the precautionary principle is also shown. The continued political stance of ignoring these regulatory and policy inconsistencies is examined and found to be flawed. It is postulated that, even in the face of these flaws and coupled with recent statements from the UK drawing attention to inconsistencies in the EU regulatory framework, the EU will continue to ignore the real and present environmental risks associated with upgraded non-GM crops for biopolitical reasons.  相似文献   

5.
A long ongoing discussion between scientists and policy decision-makers seems to have entered recently into a new phase. The consequences of release of transgenic crops into the environment are being discussed not only by scientists but also by farmers, environmental groups and politicians, while an increasing amount of data is becoming available at all biological scales, including the field level. However, data still rely on experiments designed to capture direct consumer–resource interactions. Here we argue that we should attempt to concentrate on the ecosystem functioning of soil biota under genetically-modified (GM) plants, because functional and mechanistic analysis of the multitrophic effects of GM plants on soil biota is still lacking. It is our opinion that we should avoid addressing taxa and soil communities separately, but link them at their functional level. We shall explain why, using examples from ecosystem services, allometric scaling, and soil food webs. The energy flow of any food web under stress incorporates several factors and pooled information on ecosystem services and on the different responses of soil invertebrates to induced perturbations in other trophic levels. Therefore, we will systematically focus on the complementarities of these approaches. Handling editor: Sam Cook  相似文献   

6.
In the past 6 years, the global area of commercially grown, genetically modified (GM) crops has increased more than 30-fold to over 52 million hectares. The number of countries involved has more than doubled. Especially in developing countries, the GM crop area is anticipated to increase rapidly in the coming years. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of GM crops on the environment. Regulatory approaches in Europe and North America are essentially different. In the EU, it is based on the process of making GM crops; in the US, on the characteristics of the GM product. Many other countries are in the process of establishing regulation based on either system or a mixture. Despite these differences, the information required for risk assessment tends to be similar. Each risk assessment considers the possibility, probability and consequence of harm on a case-by-case basis. For GM crops, the impact of non-use should be added to this evaluation. It is important that the regulation of risk should not turn into the risk of regulation. The best and most appropriate baseline for comparison when performing risk assessment on GM crops is the impact of plants developed by traditional breeding. The latter is an integral and accepted part of agriculture.  相似文献   

7.
转基因作物对土壤生态系统的影响   总被引:40,自引:7,他引:40  
综述了转基因作物对土壤生态系统影响的研究进展,包括转基因作物中的外源基因在土壤中的活性,转基因作物对土壤微生物区系有土壤酶活性的影响以及转基因作物对土壤动物区系的影响,转基因作物对土壤生态系统的影响与导入的外源基因特性和土壤类型相关,转基因产物进入土壤后引起的土壤生物变化的程度依赖于许多因素,最重要的决定因素是生态系统的复杂性和稳定性,评价不同转基因作物对土壤生态系统的影响具有重要的生态学意义,急需发展和完善以分子生物学为主的风险评价方法。  相似文献   

8.
A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.  相似文献   

9.
Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.  相似文献   

10.
11.
Proposed European policy in the agricultural sector will place higher emphasis on soil organic carbon (SOC), both as an indicator of soil quality and as a means to offset CO2 emissions through soil carbon (C) sequestration. Despite detailed national SOC data sets in several European Union (EU) Member States, a consistent C stock estimation at EU scale remains problematic. Data are often not directly comparable, different methods have been used to obtain values (e.g. sampling, laboratory analysis) and access may be restricted. Therefore, any evolution of EU policies on C accounting and sequestration may be constrained by a lack of an accurate SOC estimation and the availability of tools to carry out scenario analysis, especially for agricultural soils. In this context, a comprehensive model platform was established at a pan‐European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) using the agro‐ecosystem SOC model CENTURY. Almost 164 000 combinations of soil‐climate‐land use were computed, including the main arable crops, orchards and pasture. The model was implemented with the main management practices (e.g. irrigation, mineral and organic fertilization, tillage) derived from official statistics. The model results were tested against inventories from the European Environment and Observation Network (EIONET) and approximately 20 000 soil samples from the 2009 LUCAS survey, a monitoring project aiming at producing the first coherent, comprehensive and harmonized top‐soil data set of the EU based on harmonized sampling and analytical methods. The CENTURY model estimation of the current 0–30 cm SOC stock of agricultural soils was 17.63 Gt; the model uncertainty estimation was below 36% in half of the NUTS2 regions considered. The model predicted an overall increase of this pool according to different climate‐emission scenarios up to 2100, with C loss in the south and east of the area (involving 30% of the whole simulated agricultural land) compensated by a gain in central and northern regions. Generally, higher soil respiration was offset by higher C input as a consequence of increased CO2 atmospheric concentration and favourable crop growing conditions, especially in northern Europe. Considering the importance of SOC in future EU policies, this platform of simulation appears to be a very promising tool to orient future policymaking decisions.  相似文献   

12.
The development and marketing of ‘novel’ genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non‐GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed.  相似文献   

13.
A key challenge for countries like Ireland up to 2030 is to produce sufficient supplies of food, feed and fuel, without compromising on public health or negatively impacting the environment. As we progress through the technology era, certain agricultural technologies [e.g. genetically modified (GM) crops] have been championed to maximise production while minimising environmental impact. Yet, multiple arguments have been made to counter such a claim, which has led to a polarisation of opinions and a plethora of generic commentaries being made in regard to the impact of this technology. Yet, few studies within the European Union (EU) have conducted a critical needs analysis to assess the potential of specific GM traits in light of issues, such as climate change, increased environmental legislation (e.g. EU Water Framework, Nitrates Directive, proposed reform to the Pesticide Directive and Common Agricultural Policy reform), mitigating biodiversity loss and sustainable biofuel production. The goal of this study is to collate a register of GM traits such that a list of potential GM crops could be prioritised against the backdrop of the challenges facing the tillage sector. Clearly, the crops with the most significant potential for genetic modification are those that are grown widely and/or receive high applications of pesticides and fertilisers (e.g. potato, wheat, barley and maize). GM traits with significant agronomic potential include late blight resistant potato, Fusarium head blight resistant wheat and Septoria resistant wheat and herbicide‐tolerant winter oilseed rape and maize. Following on from these, crops with enhanced nitrogen‐use efficiency could provide significant input to the tillage sector in light of EU‐based restrictions on nitrogen usage, crops with elevated protein content could offset the costs of imported animal feed and crops with modified oil content/lignocellulose composition could assist in biodiesel/bioenergy production at a regional level. This study is relevant to other European countries that cultivate similar crops and like Ireland, are facing multiple challenges to their tillage sector in the near future.  相似文献   

14.
刘伟  张帆  魏云浩  赵芬 《生态学报》2023,43(11):4461-4472
生态系统服务供需均衡关系分析为生态系统管理提供了详实的科学基础信息。基于土地利用、气象和社会经济等多源数据,采用遥感反演、水量平衡方程、修正的通用土壤流失方程和植被净生产力模型(CASA)等方法,分别评估了1990—2015年珠三角城市群粮食供给、产水服务、固碳释氧和土壤保持服务;采用相关社会经济指标核算了生态系统服务的需求量;进而揭示了栅格、县域和市域多尺度的生态系统服务供需均衡关系及其时空演变特征。研究发现:(1)除粮食供给外,产水服务、固碳释氧和土壤保持服务呈波动性增加的趋势,增幅分别为52.2%、21.8%和73.4%;在空间上表现为中部平原地区服务水平低,低山丘陵地带高的分布特征。(2)除土壤保持服务外,粮食供给、产水服务和固碳释氧服务需求量不断增加,增幅分别为10.1%、17.5%和769.4%;中部平原地区生态系统服务需求量大,低山丘陵地带小。(3)除土壤保持和产水服务外,粮食供给、固碳释氧及综合服务供需指数不断下降,其中,2015年粮食供给和固碳释氧供需指数分别为-0.47和-0.71。研究结果可为决策者了解区域的生态系统服务供需均衡匹配状况提供科学基础信息,直接服务并...  相似文献   

15.
To develop a more sustainable bio‐based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse gas emissions, carbon sequestration, and nutrient dynamics. A growing number of studies examine how bioenergy crops influence carbon and nitrogen cycling. Few studies, however, have combined such assessments with analysing both the immediate effects on the provisioning of soil ecosystem services as well as the legacy effects for subsequent crops in the rotation. Here, we present results from field and laboratory experiments on effects of a standard first‐generation bioenergy crop (maize) and three different second‐generation bioenergy crops (willow short rotation coppice (SRC), Miscanthus × giganteus, switchgrass) on key soil quality parameters: soil structure, organic matter, biodiversity and growth and disease susceptibility of a major follow‐up crop, wheat (Triticum aestivum). We analysed a 6‐year field experiment and show that willow SRC, Miscanthus, and maize maintained a high yield over this period. Soil quality parameters and legacy effects of Miscanthus and switchgrass were similar or performed worse than maize. In contrast, willow SRC enhanced soil organic carbon concentration (0–5 cm), soil fertility, and soil biodiversity in the upper soil layer when compared to maize. In a greenhouse experiment, wheat grown in willow soil had higher biomass production than when grown in maize or Miscanthus soil and exhibited no growth reduction in response to introduction of a soil‐borne (Rhizoctonia solani) or a leaf pathogen (Mycosphaerella graminicola). We conclude that the choice of bioenergy crops can greatly influence provisioning of soil ecosystem services and legacy effects in soil. Our results imply that bioenergy crops with specific traits might even enhance ecosystem properties through positive legacy effects.  相似文献   

16.
This article analyses European Union (EU) farmers' attitudes towards adoption of genetically modified crops by identifying and classifying groups of farmers. Cluster analysis provided two groups of farmers allowing us to classify farmers into potential adopters or rejecters of genetically modified herbicide-tolerant (GMHT) crops. Results showed that economic issues such as the guarantee of a higher income and the reduction of weed control costs are the most encouraging reasons for potential adopters and rejecters of GMHT crops. This article also examines how putting in place measures to ensure coexistence between GM and non-GM crops may influence farmers' attitudes towards GMHT crop adoption. Results show that the implementation of a coexistence policy would have a negative impact on farmers' attitudes on adoption and consequently may hamper GMHT adoption in the EU.  相似文献   

17.
Adrenaline and insulin are the major hormones regulating glycogen metabolism in skeletal muscle. We have investigated the effects of these hormones on the rate-limiting enzymes of glycogen degradation and synthesis (phosphorylase and glycogen synthase respectively) in GM-/- mice homozygous for a null allele of the major skeletal muscle glycogen targeting subunit (GM) of protein phosphatase 1 (PP1). Hyperphosphorylation of Ser14 in phosphorylase, and Ser7, Ser640 and Ser640/644 of GS, in the skeletal muscle of GM-/- mice compared with GM+/+ mice indicates that the PP1-GM complex is the major phosphatase that dephosphorylates these sites in vivo. Adrenaline caused a 2.4-fold increase in the phosphorylase (-/+AMP) activity ratio in the skeletal muscle of control mice compared to a 1.4 fold increase in GM-/- mice. Adrenaline also elicited a 67% decrease in the GS (-/+G6P) activity ratio in control mice but only a small decrease in the skeletal muscle of GM-/- mice indicating that GM is required for the full response of phosphorylase and GS to adrenaline. PP1-GM activity and the amount of PP1 bound to GM decreased 40% and 45% respectively, in response to adrenaline in control mice. The data support a model in which adrenaline stimulates phosphorylation of phosphorylase Ser14 and GS Ser7 in GM+/+ mice by both kinase activation and PP1-GM inhibition and the phosphorylation of GS Ser640 and Ser640/644 by PP1-GM inhibition alone. Insulin decreased the phosphorylation of GS Ser640 and Ser640/644 and stimulated the GS (-/+G6P) activity ratio by approximately 2-fold in the skeletal muscle of either GM-/- and or control mice, but the low basal and insulin stimulated GS activity ratios in GM-/- mice indicate that PP1-GM is essential for maintaining normal basal and maximum insulin stimulated GS activity ratios in vivo.  相似文献   

18.
The ongoing debate about the coexistence of genetically modified (GM) and non-GM crops in the European Union (EU) mainly focuses on preventive measures needed to keep the adventitious presence of GM material in non-GM products below established tolerance thresholds, as well as on issues covering questions of liability and the duty to redress the incurred economic harm once adventitious mixing in non-GM products has occurred. By contrast, the interplay between the economic incentives and costs of coexistence has attracted little attention. The current overemphasis on the technical aspects and cost of coexistence over its economic incentives might lead EU policy-makers to adopt too stringent and rigid regulations on coexistence. Therefore, we argue for flexible coexistence regulations that explicitly take into account the economic incentives for coexistence. Our arguments provide a timely and important framework for EU policy-makers, who are currently struggling to implement coherent coexistence regulations in all member states.  相似文献   

19.
根据风险=危险×暴露的原理,在实验室条件下评价转基因作物对非靶标节肢动物影响时,所选择的代表性非靶标生物通常是在农田系统中较高地暴露于转基因外源杀虫蛋白的节肢动物种.为了弄清Bt稻田主要节肢动物暴露于Cry蛋白的程度,选择合适的非靶标节肢动物,用于转基因抗虫水稻的风险评价,本文采用酶联免疫技术检测了水稻不同生长期从转cry2Aa基因水稻田采集的不同节肢动物体内Cry2Aa蛋白的含量.结果表明: 不同节肢动物种体内的Cry蛋白含量差异显著.一些节肢动物体内不含Cry蛋白,而一些节肢动物体内含有较高的Cry蛋白;相对于花期后采集的节肢动物,在Bt水稻花期采集的节肢动物,特别是捕食性节肢动物体内的Cry蛋白含量较高;寄生性节肢动物体内未检测到Cry蛋白.这为在实验室条件下评价转基因水稻对农田非靶标节肢动物的影响奠定了基础.  相似文献   

20.
The economic benefits of insect-resistant genetically modified(GM) crops have been well documented, but the impact of such crops and the consequent reduction in pesticide use on farmers' health remains largely unknown. Through the analysis of the data collected from the physical examination from farmers in China, we show that GM rice significantly reduces pesticide use and the resultant not only visible but also invisible adverse effects on farmers' neurological, hematological, and electrolyte system. Hence, the commercialization of GM rice is expected to improve the health of farmers in developing countries, where pesticide application is necessary to mitigate crop loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号