首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

2.
Shen Y  Kim JI  Song PS 《Biochemistry》2006,45(6):1946-1949
Arabidopsis nucleoside diphosphate kinase 2 (NDPK2) is a component in the phytochrome-mediated light signaling. In the present study, its autophosphorylation was investigated. Acid-stable and alkali-stable phosphorylated residues were analyzed under two different conditions. Results revealed that NDPK2 is phosphorylated only on its active histidine residue His197 and the presence of serine/threonine phosphorylation is an experimental artifact due to the harsh condition applied in the treatment of the phosphorylated protein sample. To resolve the controversy of whether serine/threonine phosphorylation of NDPK occurs as has been suggested by other NDPK studies, NDPK2 putative phosphorylation site mutants were generated and examined. No serine/threonine phosphorylation was identified in NDPK2 or implicated in its enzymatic activity. Further studies indicated that the low enzymatic activity and autophosphorylation level of NDPK2 mutant S199A are shown to be due to a damaged H-bonding with the active histidine residue His197 in the nucleotide-binding pocket. In addition, NDPK2 Kpn loop mutant T182A was found to possess an extremely low enzymatic activity and almost no autophosphorylation, suggesting the importance of the oligomeric states of NDPK2 in NDPK2 functioning.  相似文献   

3.
Nucleoside diphosphate kinase (NDPK) has many roles and is present in different locations in the cell. Membrane-bound NDPK is present in epithelial fractions enriched for the apical membrane. Here, we show in human, mouse and sheep airway membranes, that the phosphorylation state of membrane-bound NDPK on histidine and serine residues differs dependent on many regulatory factors. GTP (but not ATP) promotes serine phosphorylation (pSer) of NDPK. Further we find that rising [AMP] promotes pSer (only with GTP) but inhibits histidine phosphorylation (pHis) of NDPK from both donors. We find that NDPK co-immunoprecipitates reciprocally with AMP-activated kinase and that these two proteins can co-localise in human airways. AMP concentrations rise rapidly when ATP is depleted or during hypoxia. We find that, in human airway cells exposed to hypoxia (3% oxygen), membrane-bound NDPK is inhibited. Although histidine phosphorylation should in principle be independent of the nucleotide triphosphates used, we speculate that this membrane pool of NDPK may be able to switch function dependent on nucleotide species.  相似文献   

4.
Nucleoside diphosphate kinase (NDPK) is involved in the regeneration of nucleoside triphosphates (NTPs) through its phosphotransferase activity via an autophosphorylating histidine residue. Additionally, autophosphorylation of serine and/or threonine residues is documented for NDPKs from various organisms. However, the metabolic significance of serine/threonine phosphorylation has not been well characterized. In this study we report the cloning and characterization of NDPKI from cultured sugarcane (Saccharum officinarum L. line H50-7209) cells, and modulation of serine autophosphorylation of NDPK1 in response to heat-shock (HS). Heat-shock treatment at 40°C for 2 h resulted in a 40% reduction in labeled phosphoserine in NDPK1. This dephosphorylation was accompanied by an increase in NDPK enzyme activity. In contrast, NDPK1 in cultured tobacco (cv. W-38) cells did not show changes in autophosphorylation or increased enzyme activity in response to HS. The mRNA or protein level of NDPK1 did not increase in response to HS. Sugarcane cells sustain the constitutive protein synthesis in addition to heat-shock protein synthesis during HS, while constitutive protein synthesis is significantly reduced in tobacco cells during HS. Thus, HS modulation of NDPK1 activity and serine dephosphorylation in sugarcane cells may represent an important physiological role in maintaining cellular metabolic functions during heat stress.  相似文献   

5.
The role of histidine in the catalytic mechanism of acetate kinase from Methanosarcina thermophila was investigated by diethylpyrocarbonate inactivation and site-directed mutagenesis. Inactivation was accompanied by an increase in absorbance at 240 nm with no change in absorbance at 280 nm, and treatment of the inactivated enzyme with hydroxylamine restored 95% activity, results that indicated diethylpyrocarbonate inactivates the enzyme by the specific modification of histidine. The substrates ATP, ADP, acetate, and acetyl phosphate protected against inactivation suggesting at least one active site where histidine is modified. Correlation of residual activity with the number of histidines modified, as determined by absorbance at 240 nm, indicated that a maximum of three histidines are modified per subunit, two of which are essential for full inactivation. Comparison of the M. thermophila acetate kinase sequence with 56 putative acetate kinase sequences revealed eight highly conserved histidines, three of which (His-123, His-180, and His-208) are perfectly conserved. Diethylpyrocarbonate inactivation of the eight histidine --> alanine variants indicated that His-180 and His-123 are in the active site and that the modification of both is necessary for full inactivation. Kinetic analyses of the eight variants showed that no other histidines are important for activity. Analysis of additional His-180 variants indicated that phosphorylation of His-180 is not essential for catalysis. Possible functions of His-180 are discussed.  相似文献   

6.
Nucleoside diphosphate kinase (NDPK) (nm23/awd) belongs to a multifunctional family of highly conserved proteins (approximately 16 to 20 kDa) including two well-characterized isoforms (NDPK-A and -B). NDPK catalyzes the conversion of nucleoside diphosphates to nucleoside triphosphates, regulates a diverse array of cellular events, and can act as a protein histidine kinase. AMP-activated protein kinase (AMPK) is a heterotrimeric protein complex that responds to the cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. AMPK was first discovered as an activity that inhibited preparations of acetyl coenzyme A carboxylase 1 (ACC1), a regulator of cellular fatty acid synthesis. We recently reported that NDPK-A (but not NDPK-B) selectively regulates the alpha1 isoform of AMPK independently of the AMP concentration such that the manipulation of NDPK-A nucleotide trans-phosphorylation activity to generate ATP enhanced the activity of AMPK. This regulation occurred irrespective of the surrounding ATP concentration, suggesting that "substrate channeling" was occurring with the shielding of NDPK-generated ATP from the surrounding medium. We speculated that AMPK alpha1 phosphorylated NDPK-A during their interaction, and here, we identify two residues on NDPK-A targeted by AMPK alpha1 in vivo. We find that NDPK-A S122 and S144 are phosphorylated by AMPK alpha1 and that the phosphorylation status of S122, but not S144, determines whether substrate channeling can occur. We report the cellular effects of the S122 mutation on ACC1 phosphorylation and demonstrate that the presence of E124 (absent in NDPK-B) is necessary and sufficient to permit both AMPK alpha1 binding and substrate channeling.  相似文献   

7.
NM23-H1 (also known as NME1) was the first identified metastasis suppressor, which displays a nucleoside diphosphate kinase (NDPK) and histidine protein kinase activity. NDPKs are linked to many processes, such as cell migration, proliferation, differentiation, but the exact mechanism whereby NM23-H1 inhibits the metastatic potential of cancer cells remains elusive. However, some recent data suggest that NM23-H1 may exert its anti-metastatic effect by blocking Ras/ERK signaling. In mammalian cell lines NDPK-mediated attenuation of Ras/ERK signaling occurs through phosphorylation (thus inactivation) of KSR (kinase suppressor of Ras) scaffolds. In this review I summarize our knowledge about KSR’s function and its regulation in mammals and in C. elegans. Genetic studies in the nematode contributed substantially to our understanding of the function and regulation of the Ras pathway (i.e. KSR’s discovery is also linked to the nematode). Components of the RTK/Ras/ERK pathway seem to be highly conserved between mammals and worms. NDK-1, the worm homolog of NM23-H1 affects Ras/MAPK signaling at the level of KSRs, and a functional interaction between NDK-1/NDPK and KSRs was first demonstrated in the worm in vivo. However, NDK-1 is a factor, which is necessary for proper MAPK activation, thus it activates rather than suppresses Ras/MAPK signaling in the worm. The contradiction between results in mammalian cell lines and in the worm regarding NDPKs’ effect exerted on the outcome of Ras signaling might be resolved, if we better understand the function, structure and regulation of KSR scaffolds.  相似文献   

8.
In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + P(i) acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain organization of subunits and in the presence of a second highly conserved histidine residue in the beta-subunit, which is absent in SCS. The influence of these differences on structure and reaction mechanism of ACD was studied with heterotetrameric ACD (alpha(2)beta(2)) from the hyperthermophilic archaeon Pyrococcus furiosus in comparison with heterotetrameric SCS. A structural model of P. furiosus ACD was constructed suggesting a novel spatial arrangement of the subunits different from SCS, however, maintaining a similar catalytic site. Furthermore, kinetic and molecular properties and enzyme phosphorylation as well as the ability to catalyze arsenolysis of acetyl-CoA were studied in wild type ACD and several mutant enzymes. The data indicate that the formation of enzyme-bound acetyl phosphate and enzyme phosphorylation at His-257alpha, respectively, proceed in analogy to SCS. In contrast to SCS, in ACD the phosphoryl group is transferred from the His-257alpha to ADP via transient phosphorylation of a second conserved histidine residue in the beta-subunit, His-71beta. It is proposed that ACD reaction follows a novel four-step mechanism including transient phosphorylation of two active site histidine residues:  相似文献   

9.
Dorion S  Matton DP  Rivoal J 《Planta》2006,224(1):108-124
A cDNA encoding Solanum chacoense cytosolic NDPK (NDPK1, EC 2.7.4.6) was isolated. The open reading frame encoded a 148 amino acid protein that shares homology with other cytosolic NDPKs including a conserved N-terminal domain. S. chacoense NDPK1 was expressed in Escherichia coli as a 6×His-tagged protein and purified by affinity chromatography. The recombinant protein exhibited a pattern of abortive complex formation suggesting that the enzyme is strongly regulated by the NTP/NDP ratio. A polyclonal antibody generated against recombinant NDPK1 was specific for the cytosolic isoform in Solanum tuberosum as shown from immunoprecipitation experiments and immunoblot analysis of chloroplasts and mitochondria preparations. NDPK activity and NDPK1 protein were found at different levels in various vegetative and reproductive tissues. DEAE fractogel analyses of NDPK activity in root tips, leaves, tubers and cell cultures suggest that NDPK1 constitutes the bulk of extractable NDPK activity in all these organs. NDPK activity and NDPK1 protein levels raised during the exponential growth phase of potato cell cultures whereas no rise in activity or NDPK1 protein was observed when sucrose concentration in the culture was manipulated to limit growth. Activity measurements, immunoblot analysis as well as immunolocalization experiments performed on potato root tips and shoot apical buds demonstrated that NDPK1 was predominantly localized in the meristematic zones and provascular tissues of the apical regions. These data suggest that NDPK1 plays a specific role in the supply of UTP during early growth of plant meristematic and provascular tissues.  相似文献   

10.
11.
G protein betagamma dimers can be phosphorylated in membranes from various tissues by GTP at a histidine residue in the beta subunit. The phosphate is high energetic and can be transferred onto GDP leading to formation of GTP. Purified Gbetagamma dimers do not display autophosphorylation, indicating the involvement of a separate protein kinase. We therefore enriched the Gbeta-phosphorylating activity present in preparations of the retinal G protein transducin and in partially purified G(i/o) proteins from bovine brain. Immunoblots, autophosphorylation, and enzymatic activity measurements demonstrated enriched nucleoside diphosphate kinase (NDPK) B in both preparations, together with residual Gbetagamma dimers. In the retinal NDPK B-enriched fractions, a Gbeta-specific antiserum co-precipitated phosphorylated NDPK B, and an antiserum against the human NDPK co-precipitated phosphorylated Gbetagamma. In addition, the NDPK-containing fractions from bovine brain reconstituted the phosphorylation of purified Gbetagamma. For identification of the phosphorylated histidine residue, bovine brain Gbetagamma and G(t)betagamma were thiophosphorylated with guanosine 5'-O-(3-[(35)S]thio)triphosphate, followed by digestion with endoproteinase Glu-C and trypsin, separation of the resulting peptides by gel electrophoresis and high pressure liquid chromatography, respectively, and sequencing of the radioactive peptides. The sequence information produced by both methods identified specific labeled fragments of bovine Gbeta(1) that overlapped in the heptapeptide, Leu-Met-Thr-Tyr-Ser-His-Asp (amino acids 261-267). We conclude that NDPK B forms complexes with Gbetagamma dimers and contributes to G protein activation by increasing the high energetic phosphate transfer onto GDP via intermediately phosphorylated His-266 in Gbeta(1) subunits.  相似文献   

12.
Staphylococcus aureus cause infections by producing toxins, a process regulated by cell-cell communication (quorum sensing) through the histidine-phosphorylation of the target of RNAIII-activating protein (TRAP). We show here that TRAP is highly conserved in staphylococci and contains three completely conserved histidine residues (His-66, His-79, His-154) that are phosphorylated and essential for its activity. This was tested by constructing a TRAP(-) strain with each of the conserved histidine residues changed to alanine by site-directed mutagenesis. All mutants were tested for pathogenesis in vitro (expression of RNAIII and hemolytic activity) and in vivo (murine cellulitis model). Results show that RNAIII is not expressed in the TRAP(-) strain, that it is non hemolytic, and that it does not cause disease in vivo. These pathogenic phenotypes could be rescued in the strain containing the recovered traP, confirming the importance of TRAP in S. aureus pathogenesis. The phosphorylation of TRAP mutated in any of the conserved histidine residues was significantly reduced, and mutants defective in any one of these residues were non-pathogenic in vitro or in vivo, whereas those mutated in a non-conserved histidine residue (His-124) were as pathogenic as the wild type. These results confirm the importance of the three conserved histidine residues in TRAP activity. The phosphorylation pattern, structure, and gene organization of TRAP deviates from signaling molecules known to date, suggesting that TRAP belongs to a novel class of signal transducers.  相似文献   

13.
Virtually all of the eukaryotic low-molecular weight protein tyrosine phosphatases (LMW PTPases) studied to date contain a conserved, high-pK(a) histidine residue that is hydrogen bonded to a conserved active site asparagine residue of the phosphate binding loop. However, in the putative enzyme encoded by the genome of the trichomonad parasite Tritrichomonas foetus, this otherwise highly conserved histidine is replaced with a glutamine residue. We have cloned the gene, expressed the enzyme, demonstrated its catalytic activity, and examined the structural and functional roles of the glutamine residue using site-directed mutagenesis, kinetic measurements, and NMR spectroscopy. Titration studies of the two native histidine residues in the T. foetus enzyme as monitored by (1)H NMR revealed that H44 has a pK(a) of 6.4 and H143 has a pK(a) of 5.3. When a histidine residue was introduced in place of the native glutamine at position 67, a pK(a) of 8.2 was measured for this residue. Steady state kinetic methods were employed to study how mutation of the native glutamine to alanine, asparagine, and histidine affected the catalytic activity of the enzyme. Examination of k(cat)/K(m) showed that Q67H exhibits a substrate selectivity comparable to that of the wild-type (WT) enzyme, while Q67N and Q67A show reduced activity. The effect of pH on the reaction rate was examined. Importantly, the pH-rate profile of the WT TPTP enzyme revealed a much more clearly defined acidic limb than that which can be observed for other wild-type LMW PTPases. The pH-rate curve of the Q67H mutant shows a shift to a lower pH optimum relative to that seen for the wild-type enzyme. The Q67N and Q67A mutants showed curves that were shifted to higher pH optima. Although the active site of this enzyme is likely to be similar to that of other LMW PTPases, the hydrogen bonding and electrostatic changes afford new insight into factors affecting the pH dependence and catalysis by this family of enzymes.  相似文献   

14.
The structure of the recombinant Trypanosoma rangeli sialidase (TrSA) has been determined at 1.6A resolution, and the structures of its complexes with the transition state analog inhibitor 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (DANA), Neu-5-Ac-thio-alpha(2,3)-galactoside (NATG) and N-acetylneuraminic acid (NANA) have been determined at 1.64A, 2.1A and 2.85A, respectively. The 3D structure of TrSA is essentially identical to that of the natural enzyme, except for the absence of covalently attached sugar at five distinct N-glycosylation sites. The protein exhibits a topologically rigid active site architecture that is unaffected by ligand binding. The overall binding of DANA to the active site cleft is similar to that observed for other viral and bacterial sialidases, dominated by the interactions of the inhibitor carboxylate with the conserved arginine triad. However, the interactions of the other pyranoside ring substituents (hydroxyl, N-acetyl and glycerol moieties) differ between trypanosomal, bacterial and viral sialidases, providing a structural basis for specific inhibitor design. Sialic acid is found to bind the enzyme with the sugar ring in a distorted (half-chair or boat) conformation and the 2-OH hydroxyl group at hydrogen bonding distance of the carboxylate of Asp60, substantiating a direct catalytic role for this residue. A detailed comparison of TrSA with the closely related structure of T.cruzi trans-sialidase (TcTS) reveals a highly conserved catalytic center, where subtle structural differences account for strikingly different enzymatic activities and inhibition properties. The structure of TrSA in complex with NATG shows the active site cleft occupied by a smaller compound which could be identified as DANA, probably the product of a hydrolytic side reaction. Indeed, TrSA (but not TcTS) was found to cleave O and S-linked sialylated substrates, further stressing the functional differences between trypanosomal sialidases and trans-sialidases.  相似文献   

15.
Aspartate aminotransferases have been cloned and expressed from Crithidia fasciculata, Trypanosoma brucei brucei, Giardia intestinalis, and Plasmodium falciparum and have been found to play a role in the final step of methionine regeneration from methylthioadenosine. All five enzymes contain sequence motifs consistent with membership in the Ia subfamily of aminotransferases; the crithidial and giardial enzymes and one trypanosomal enzyme were identified as cytoplasmic aspartate aminotransferases, and the second trypanosomal enzyme was identified as a mitochondrial aspartate aminotransferase. The plasmodial enzyme contained unique sequence substitutions and appears to be highly divergent from the existing members of the Ia subfamily. In addition, the P. falciparum enzyme is the first aminotransferase found to lack the invariant residue G197 (P. K. Mehta, T. I. Hale, and P. Christen, Eur. J. Biochem. 214:549-561, 1993), a feature shared by sequences discovered in P. vivax and P. berghei. All five enzymes were able to catalyze aspartate-ketoglutarate, tyrosine-ketoglutarate, and amino acid-ketomethiobutyrate aminotransfer reactions. In the latter, glutamate, phenylalanine, tyrosine, tryptophan, and histidine were all found to be effective amino donors. The crithidial and trypanosomal cytosolic aminotransferases were also able to catalyze alanine-ketoglutarate and glutamine-ketoglutarate aminotransfer reactions and, in common with the giardial aminotransferase, were able to catalyze the leucine-ketomethiobutyrate aminotransfer reaction. In all cases, the kinetic constants were broadly similar, with the exception of that of the plasmodial enzyme, which catalyzed the transamination of ketomethiobutyrate significantly more slowly than aspartate-ketoglutarate aminotransfer. This result obtained with the recombinant P. falciparum aminotransferase parallels the results seen for total ketomethiobutyrate transamination in malarial homogenates; activity in the latter was much lower than that in homogenates from other organisms. Total ketomethiobutyrate transamination in Trichomonas vaginalis and G. intestinalis homogenates was extensive and involved lysine-ketomethiobutyrate enzyme activity in addition to the aspartate aminotransferase activity. The methionine production in these two species could be inhibited by the amino-oxy compounds canaline and carboxymethoxylamine. Canaline was also found to be an uncompetitive inhibitor of the plasmodial aspartate aminotransferase, with a K(i) of 27 microm.  相似文献   

16.
Crystal structures of histidyl-tRNA synthetase (HisRS) from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme and reveal differences from bacterial homologs. HisRSs in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three-dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active-site rearrangement upon histidine binding but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme's first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human HisRSs. The essentiality of the single HisRS gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.  相似文献   

17.
NDPK catalyses the interconversion of NTPs and NDPs using a phosphohistidine intermediate as part of its catalytic site. Recombinant Solanum chacoense cytosolic NDPK incubated with [gamma-(32)P]ATP was allowed to autophosphorylate and (32)P-labelled P-Ser was identified in an acid hydrolysate of the protein by two-dimensional TLC. Further analysis of (32)P-labelled recombinant NDPK by tryptic digestion followed by automated Edman sequencing of the radioactive peptide allowed the identification of a single and conserved P-Ser residue at position 117. Analysis of site-directed mutants where Ser117 was substituted to Asp indicated that the presence of a negative charge at position 117 dramatically lowered the enzyme's catalytic efficiency. Ser autophosphorylation was markedly reduced with increasing ADP concentrations in the autophosphorylation assay. These findings provide evidence that autophosphorylation of cytosolic NDPK on Ser117 could constitute a regulatory mechanism for this important enzyme and that autophosphorylation of Ser117 is modulated by NDP availability.  相似文献   

18.
In etiolated seedlings of Pisum sativum and leaves of Arabidopsis thaliana, in vivo ethylene treatment resulted in an increase in in vitro phosphorylation of 17 kD (P. sativum) or 16 and 17 kD (A. thaliana) polypeptides. These polypeptides were identified as nucleoside diphosphate kinase (NDPK) based on both biochemical properties and interaction with antibodies against NDPK from P. sativum. Using the receptor-directed antagonist of ethylene action 2,5-norbornadiene and the ethylene-insensitive mutants of A. thaliana etr1-1 and eti5, ethylene specificity and receptor dependence of NDPK phosphorylation have been demonstrated. In pea epicotyls, ethylene treatment also led to increase in nucleoside transferase activity unlike in A. thaliana leaves. The increases in nucleoside transferase activity and NDPK phosphorylation were very rapid and transient. The results suggest a role for NDPK as a possible component of the ethylene signal transduction chain.  相似文献   

19.
The refined crystal structures of chicken, yeast and trypanosomal triosephosphate isomerase (TIM) have been compared. TIM is known to exist in an "open" (unliganded) and "closed" (liganded) conformation. For chicken TIM only the refined open structure is available, whereas for yeast TIM and trypanosomal TIM refined structures of both the open and the closed structure have been used for this study. Comparison of these structures shows that the open structures of chicken TIM, yeast TIM and trypanosomal TIM are essentially identical. Also it is shown that the closed structures of yeast TIM and trypanosomal TIM are essentially identical. The conformational difference between the open and closed structures concerns a major shift (7 A) in loop-6. Minor shifts are observed in the two adjacent loops, loop-5 (1 A) and loop-7 (1 A). The pairwise comparison of the three different TIM barrels shows that the 105C alpha atoms of the core superimpose within 0.9 A. The sequences of these three TIMs have a pairwise sequence identity of approximately 50%. The residues that line the active site are 100% conserved. The residues interacting with each other across the dimer interface show extensive variability, but the direct hydrogen bonds between the two subunits are well conserved. The orientation of the two monomers with respect to each other is almost identical in the three different TIM structures. There are 56 (22%) conserved residues out of approximately 250 residues in 13 sequences. The functions of most of these conserved residues can be understood from the available open and closed structures of the three different TIMs. Some of these residues are quite far from the active site. For example, at a distance of 19 A from the active site there is a conserved saltbridge interaction between residues at the C-terminal ends of alpha-helix-6 and alpha-helix-7. This anchoring contrasts with the large conformational flexibility of loop-6 and loop-7 near the N termini of these helices. The flexibility of loop-6 is facilitated by a conserved large empty cavity near the N terminus of alpha-helix-6, which exists only in the open conformation.  相似文献   

20.
An enzyme of molecular weight 32,000 comprising a single subunit has been isolated from whole cell extracts of the yeast Saccharomyces cerevisiae. In vitro, the enzyme transfers the gamma phosphate of ATP to a protein substrate, histone H4, to produce an alkali-stable phosphorylation. Modification of the substrate histidine with diethylpyrocarbonate prevented phosphorylation. Phosphoamino acid analysis of the phosphorylated substrate showed the presence of 1-phosphohistidine. Hence, the isolated enzyme is a protein histidine kinase. A novel assay for acid-labile alkali-stable protein phosphorylation was used in the purification of the kinase activity to a final specific activity of 2,700 nmol/15 min/mg. The purified enzyme phosphorylates specifically histidine 75 in histone H4 and does not phosphorylate histidine 18 nor histidine residues in any other core histone. Steady state kinetic data are consistent with an ordered sequential reaction with Km values for Mg-ATP and histone H4 of 60 and 17 microM, respectively. The protein histidine kinase requires a divalent cation such as Mg2+, Co2+, or Mn2+ but will not use Ca2+, Zn2+, Cu2+, Fe2+, spermine, or spermidine. This is the first purification of an enzyme that catalyzes N-linked phosphorylation in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号