首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

2.
Fox M  Boyle JM  Fox BW 《Mutation research》1976,35(2):289-309
Purine analogue resistant clones have been selected from the closely related Chinese hamster lines V79A and V79S. Clones were of either spontaneous origin or induced by EMS or ultraviolet light. The majority of clones selected in 8-azaguanine showed stable cross resistance to 6-thioguanine. Clones derived from V79A and selected for 6-thioguanine resistance were cross resistant to 8-azaguanine: however a group of 6-thioguanine resistant mutants selected from V79S cells were 8-azaguanine sensitive. All clones except two were unable to grow in HAT medium. The two exceptions were 8-azaguanine resistant, showed partial sensitivity to 6-thioguanine, and also differed in other biochemical characteristics. HGPRT activity was measurable in extracts of all clones under standard conditions. In many clones, HGPRT activity increased as the hypoxanthine concentration was reduced. Whole cell uptake of [14C] hypoxanthine was low in all cases examined and was not modified by incubation in the presence of amethopterin. The heat sensitivity and electrophoretic mobility of HGPRT in extracts of some clones was compared to that in wild-type extracts. All clones tested except one, which was consistently HAT positive, showed enhanced heat sensitivity and reduced electrophoretic mobility. None of the mutants reverted spontaneously at detectable frequency but some could be induced to revert by EMS. The presence of measurable enzyme with altered properties in all clones suggests that these revertable drug resistant clones represent missense mutants.  相似文献   

3.
4.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

5.
Cultured mouse clonal cells, H-5, were treated with two different mutagens, ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Then two selective procedures using 8-azaguanine (8-AZ) or 6-thioguanine (6-TG) were compared in an effort to isolate hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-deficient cells containing different gene alterations. While many 8-AZ resistant cells were induced by EMS treatment, considerably more 6-TG resistant cells were induced by the same treatment. MNNG treatment induced many 8-AZ resistant mutants but induced hardly any 6-TG resistant mutants. After a fusion experiment of 91 sets involving 13 HGPRT-deficient mouse clones, 7 of which were resistant to 8 AZ and 6 of which were resistant to 6TG with subsequent selection on HAT medium, complementation occurred only in those hybrid mixtures formed between 8-AZ- and 6-TG-resistant clones, while it did not occur at all in hybrid mixtures formed between different 8-AZ-resistant clones and mixtures formed between different 6-TG-resistant clones. The clonally isolated HGPRT-positive cells, characterized by tetraploid karyology, had an apparent activity of HGPRT ranging from 25 to 30% of that of the wild-type parental cells. Heat-inactivation of HGPRT at 65 °C revealed that HGPRT from wild-type cells was heat stable and HGPRT from some 8-AZ-resistant clones were heat labile, while HGPRT from hybrid cells had intermediate stability. These results indicate that there would be alterations in the structural gene of HGPRT in the 8-AZ- or 6-TG-resistant mutants, and also that two selective procedures with 8-AZ or 6-TG alone can isolate different alterations in the structural gene of HGPRT. Moreover, this indicates that some of these gene alterations were mutually complementary. It is most likely that there would be at least 3 cistrons in the locus responsible for HGPRT activity in the mouse cells.  相似文献   

6.
A search for allelic recombination in Chinese hamster cell hybrids   总被引:8,自引:0,他引:8  
Summary Mutants resistant to 6-thioguanine were selected from CHO cells which were either temperature sensitive or proline requiring. These mutants were stable and had low levels of hypoxanthine guanine phosphoribosyl transferase (HGPRT). Hybrids were selected which were heteroallelic at the hgprt locus and complementation between the mutants used was not observed. Interallelic recombination at this locus would generate hgprt + cells which could be selected in Littlefield's HAT medium. Selection experiments with hybrids containing three different pairs of mutants yielded no recombinants among populations of 4x106-2x107 cells. After treatment with the recombinagen mitomycin C, 3 putative recombinants were detected amongst 1.4x107 surviving cells from one hybrid. One of these strains was examined and shown to have a normal level of HGPRT and its heterozygosity at this locus was demonstrated by the segregation of colonies resistant to 6-thioguanine. It cannot be excluded that the rare hgprt + colonies seen arose by mutation rather than by recombination. Mitotic allelic recombination therefore appears to be a much less frequent event in CHO cells than it is in lower eukaryotes. It is possible that mitotic recombination is effectively suppressed in mammalian cells to prevent the expression of deleterious recessive mutants.  相似文献   

7.
Hybridization of mutant cell lines deficient in hypoxanthine-guanine phosphoribosyl transferase (HGPRT; E.C.: 2.4.2.8) from a variety of established rodent sources with HGPRT plus human cells yielded progeny cells which grew in selective medium containing hypoxanthine, aminopterin and thymidine (HAT). The same result was obtained when the human cell used was an HGPRT minus transformed line derived from a patient with the Lesch-Nyhan syndrome. Electrophoretic analysis indicated that all HAT-resistant progeny clones contained an active HGPRT enzyme which was indistinguishable from the wild type enzyme of the corresponding normal rodent cells. In contrast, no HAT-resistant cells have been obtained when the same HGPRT minus rodent cells were subjected to fusion processes in the absence of human cells or when they fused with similarly derived HGPRT minus mutant cells of other rodents. Reversion in expression of the rodent gene for HGPRT was detected in clones which retained one or more human chromosomes and in clones which contained no detectable human chromosomal material. The observed re-expression of rodent HGPRT in HAT-resistant clones suggests that HGPRT plus as well as HGPRT minus human cells contributed a factor which determined the expression of respective rodent structural genes for HGPRT. In contrast, HGPRT minus rodent cells were unable to induce the synthesis or normal HGPRT in the cells derived from the patient with the Lesch-Nyhan syndrome.  相似文献   

8.
The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from the available tightly linked molecular markers flanking the resistance region. Various walking steps were performed in order to identify the minimum tiling path of BAC clones covering the Dp-fl region from both the “resistant” and “susceptible” chromosomes of ‘Florina’. A genomic region of about 279 Kb encompassing the Dp-fl resistance locus was fully sequenced by the PacBio technology. Through the development of new polymorphic markers, the mapping interval around the resistance locus was narrowed down to a physical region of 95 Kb. The annotation of this sequence resulted in the identification of four candidate genes putatively involved in the RAA resistance response.  相似文献   

9.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

10.
Thioguanine-resistant primary clones were grown from single cell suspensions obtained from dog and human kidneys by enzymatic digestion. In medium containing a relatively high concentration (10g/ ml) of thioguanine, thioguanine-resistant primary clones arose from each source at frequencies ranging from 10–4 to 10–5. A reduction in total hypoxanthine uptake was found in the thioguanine-resistant primary clones which had developed in thioguanine medium, consistent with a reduction in hypoxanthine phosphoribosyltransferase activity. When these thioguanine-resistant primary clones were subsequently grown in the absence of thioguanine and assayed for the thioguanine-resistant phenotype and hypoxanthine phosphoribosyltransferase activity, it was found that most were now thioguanine-sensitive and yielded cell free extracts with substantial amounts of hypoxanthine phosphoribosyltransferase activity. In contrast, thioguanine-resistant human clones grown continuously in the presence of thioguanine yielded cell free extracts with little or no detectable hypoxanthine phosphoribosyltransferase activity. Southern blot analysis demonstrated no structural alterations in the hypoxanthine phosphoribosyltransferase gene in thioguanine-resistant primary human kidney clones. These results suggest that a novel mechanism(s) for thioguanine resistance and the control of hypoxanth phosphoribosyltransferase expression may occur in dog and human kidney cells.Abbreviations AG 8-azaguanine - APRT adenine phosphoribosyltransferase - DAPI 4-6 diamino-2-phenylindole - DV Dulbecco-Vogt - HAT hypoxanthine, aminopterin, thymidine - HPRT hypoxanthine phosphoribosyltransferase - PRPP 5-phosphoribosyl 1-pyrophosphate - TG 6-thioguanine - TGr thioguanine-resistant - TGs thioguanine-sensitive - TIP thymidine triphosphate  相似文献   

11.
12.
An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.  相似文献   

13.
Summary The locus, I2, which in tomato confers resistance against Fusarium oxysporum f. sp. lycopersici race 2, was introgressed into Lycopersicon esculentum from the wild species L. pimpinellifolium (P.I. 126915). We searched for restriction fragment length polymorphisms (RFLPs) between nearly isogenic lines (NILs) in clones that map to the region introgressed from the wild species. Since I2 maps to chromosome 11, we used DNA clones from this chromosome as hybridization probes to Southern blots containing bound DNA of the NILs digested with 23 restriction enzymes. Of the 14 chromosome 11 clones, 9 exhibited polymorphism. These clones were further hybridized to verification filters that contained DNA from resistant and susceptible L. esculentum varieties digested with the enzymes that gave the polymorphism. One clone, TG105, was found to be associated with I2; 19 susceptible lines showed a different RFLP with this probe than 16 resistant lines, including the original L. pimpinellifolium accession used as a source for the resistance gene. These results together with our mapping analysis indicate that TG105 is closely linked to the resistance gene.  相似文献   

14.
The cytotoxic and mutagenic effects of the incorporation of 5-bromodeoxyuridine (BrdU)_followed by exposure to black light were investigated with Chinese hamster ovary (CHO) cells in cell culture. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (hgprt) locus was determined by selection for 6-thioguanine resistant (TGr) mutants (CHO/HGPRT system). BrdU alone has been shown to be mutagenic only at concentrations of 50 μM or greater. This study was performed in an effort to determine whether BrdU is actually incorporated into the hgprt gene when lower, nonmutagenic concentrations are employed. Neither BrdU (1–20 μM) nor exposure to black light alone was mutagenic, but the combined treatment did result in the induction of TGr mutants. The mutant frequency increased with increasing light exposure at constant BrdU and with inreasing BrdU at constant light exposure. These results show that BrdU is incorporated into the hgprt gene, but that this does not result in mutation induction in the absence of light exposure. Such a BrdU-plus-light procedure might be applied to studies of DNA repair at this locus, since mutation induction requires both BrdU incorporation and subsequent exposure to black light.  相似文献   

15.
Factors influencing the frequency of thioguanine resistant mutations were examined in Chinese hamster lung cells damaged with a carcinogen, N-acetoxy-2-acetyl aminofluorene. Factors such as inoculum density, expression time, and concentration of selective agent were found to have a profound effect on the mutation frequency.Over a range of doses, a longer expression time is required for mutant cells from a more damaged population to reach their maximum frequency. In order to investigate the elements involved in this phenomenon, the increment in the plating efficiency of treated cells as a function of expression time, spontaneous mutation rate per cell per generation, viability of mutant as well as wild type cells, and half life of HGPRTase were evaluated.There was an observed relationship between induced mutation frequency and plating efficiency of treated cells. When treated cells had recovered from effects of the treatment and arrived at the normal level of plating efficiency, they also yielded the maximum frequency of mutations.The estimated mutation rate was 5.5 × 10?8 per cell per generation. This number is too small to account for the increment in mutation frequency with the increase in the expression time. The mutation frequency of spontaneous origin was 4 × 10?6 and that of induction of 10?5 M NA-AAF was 10?4. Lower growth rates of mutant cells cannot explain this increase in the number of mutants recovered, either.Continuous diminution in the level of HGPRTase, at 35% daily, interpreted as an important factor responsible for the recovery of mutation frequency during expression time, was observed in non-dividing cells. None of a large number of mutants sampled from those isolated had HGRPT activity. This indicates that they are true mutants and are not a result of phenocopy. Only cells completely deficient in HGPRT activity are recovered in TG selection medium. It is suggested, therefore, that this cell line is suitable for mutagenicity testing in the induction of mutation at the HGPRT locus.  相似文献   

16.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

17.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

18.
The cytotoxic effects of azaguanine and thioguanine have been compared in two wild-type V79 cells. To achieve equitoxic effects in both cell lines a 10–20-fold higher concentration of azaguanine than thioguanine was required. Affinity of HGPRT for azaguanine was 10-fold lower than for hypoxanthine in both cell lines and was similar to that for thioguanine in V79S cells. Affinity for thioguanine differed by a factor of 3 in the two cell lines. The rate of cell kill by azaguanine was markedly slower than by thioguanine in both cell lines. Reduction of whole cell uptake of [14C]hypoxanthine incorporation by unlabelled azaguanine was only demonstrable after prolonged incubation periods as was incorporation of [14C]azaguanine into acid-insoluble material. Experiments with cell-free extracts indicated that hypoxanthine acts as a non-competitive inhibitor of the enzyme. The slow rate of dissociation of the HGPRT—azaguanine complex is reflected in the slow rate of killing of wild-type cells. Clones resistant to the cytotoxic effects of these analogues have been selected from both cell lines and have been shown to possess HGPRT with altered kinetic properties. Our data suggest that azaguanine and thioguanine may select for mutations at different sites on the HGPRT molecule in V79 cells and provide possible explanations for the differences in effectiveness of these two agents reported in other cell lines.  相似文献   

19.
Tritium suicide was shown to be highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of 3 kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [3H]hypoxanthine for 5 or 10 min, followed by storage of 3H-labelled cells at ?70°C for 4–10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of [3H]hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent Km for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine.  相似文献   

20.
Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (referred to as the CHO/HGPRT system) can be quantitated by selection for the phenotype of resistance to 6-thioguanine (TG) under stringently defined conditions. The phenotypic expression time, that is, the time interval after mutagen treatment which is necessary befor all mutant cells are able to express the TG-resistant phenotype, has been found to be 7–9 days in this CHO/HGPRT system when the cells are subcultured every 48 h. Subculture in medium with or without hypoxanthine (HX) utilizing trypsin, ethylenediaminetetraacetic acid (EDTA), or ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) for cell removal yields identical results. When subculture at intervals greater than 48 h is employed, a slight lengthening of the expression time is observed. An alternative method to regular subculture has also been achieved by maintaining the cells in a viable, non-dividing state in serum-free medium. This procedure yields a similar time course of phenotypic expression and thus shows that continued cell division is not essential to this expression process. In addition, this observation offers methodology which can significantly reduce the investment of time and money for mutation induction determinations in this mammalian cell gene mutation assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号