首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

2.
The metabolism of epimeric 7-hydroxycholesterol was studied in vitro. 7Alpha-hydroxycholesterol or 7beta-hydroxycholesterol were incubated with rabbit, guinea pig, rat, hamster, and chicken microsomal suspensions and then extracted and analyzed using high-performance liquid chromatography (HPLC). 7Alpha-hydroxy-4-cholesten-3-one was the main product from 7alpha-hydroxycholesterol in the rabbit, guinea pig, and rat. A considerable amount of 7-ketocholesterol was also produced in the hamster and chicken. In all vertebrates, 7beta-hydroxycholesterol was converted only to 7-ketocholesterol in all vertebrates. 7Beta-hydroxy-4-cholesten-3-one was not detected. Reduction of 7-ketocholesterol was also studied in the rat and hamster. Whereas 7-ketocholesterol was converted to 7beta-hydroxycholesterol in the rat, it was converted to both 7alpha- and 7beta-hydroxycholesterol in the hamster. These results suggest that 7alpha-hydroxycholesterol is converted not only to 7alpha-hydroxy-4-cholesten-3-one but also to 7-ketocholesterol in the hamster and chicken. 7Beta-hydroxycholesterol was converted to 7-ketocholesterol in all vertebrates tested. The interconversion between 7alpha- and 7beta-hydroxycholesterol via 7-ketocholesterol was observed in the hamster in this in vitro study.  相似文献   

3.
In this paper we describe the sequence of reactions leading from tetrachloro-para-hydroquinone to 1,2,4-trihydroxybenzene by inducible enzymes of Rhodococcus chlorophenolicus. Tetrachlorohydroquinone was first converted to a dichlorotrihydroxybenzene in a reaction involving both hydrolytic and reductive dechlorination; no trichlorinated intermediate was detected. Dichlorotrihydroxybenzene was subsequently reductively dechlorinated to a monochlorotrihydroxybenzene and finally to 1,2,4-trihydroxybenzene. The cell extract also catalyzed, at a lower rate, reductive dechlorination of trichlorohydroquinone, mainly to 2,3-dichlorohydroquinone. To our knowledge this is the first demonstration of reductive aromatic dechlorination by bacterial enzymes.  相似文献   

4.
1. Indomethacin and oxamethacin reduce the formation of malonaldehyde from arachidonic acid by rat platelets in vitro. Sulindac has no influence on this formation. 2. Indomethacin, oxamethacin and sulindac inhibit the action of arachidonic acid on the rat stomach strips in vitro. 3. These three anti-inflammatory drugs suppress the hypotensive activity of arachidonic acid in the rat in vivo. 4. The comparison of the inhibitory activities of these drugs in vivo and in vitro shows that sulindac is converted to a potent anti-prostaglandin-synthetase metabolite and that a part of the action of oxamethacin depends on its conversion to indomethacin in the rat.  相似文献   

5.
Administration of antimineralocorticoid spironolactone (SPL) to rats results in modest destruction of hepatic cytochrome P-450 with parallel loss of heme. This process is accentuated by pretreatment with dexamethasone (DEX), an inducer of cytochrome P-450p and is associated with marked functional loss of cytochrome P-450p-dependent hydroxylases. Cytochrome P-450 destruction may be replicated in vitro when microsomes from DEX-pretreated rats are incubated with SPL and NADPH and is impaired when these rats are given triacetyloleandomycin, an inhibitor of cytochrome P-450p. In vitro SPL-mediated cytochrome P-450 destruction is accompanied by a loss of heme, which appears to be converted to reactive intermediates which covalently bind to microsomes or are converted to polar metabolites.  相似文献   

6.
Characterization of a DNA-cleaving deoxyribozyme   总被引:1,自引:0,他引:1  
A copper-dependent self-cleaving DNA that was isolated by in vitro selection has been minimized to its smallest active domain using both in vitro selection and rational design methods. The minimized 46-nucleotide deoxyribozyme forms duplex and triplex substructures that flank a highly conserved catalytic core. This self-cleaving construct can be converted into a bimolecular complex that comprises separate substrate and enzyme domains. Substrate cleavage is directed at one of two adjacent nucleotides and proceeds via an oxidative cleavage mechanism that is unique to the position cleaved. The structural, kinetic and mechanistic characteristics of this DNA-cleaving deoxyribozyme are reported.  相似文献   

7.
Corticosteroid-induced tyrosine aminotransferase (EC 2.6.1.5) from cultured hepatoma cells was separated by carboxymethyl-Sephadex chromatography into three molecular forms resembling those described previously in the rat liver. Enzyme forms were isolated and used as purified substrates to examine their in vitro interconversion by various subcellular fractions. Isolated form III was converted to forms II and I, and isolated form II was converted to form I by the coarse particulate fraction sedimenting at 1000 X g. This activity was inhibited by the serine enzyme inhibitor phenylmethane sulfonyl fluoride or by raising the pH to 8.7. Conversion of enzyme forms in vitro in the opposite direction (I leads to II leads to III) could not be detected. The distribution of enzyme forms in vivo was examined by the use of experimental conditions that prevent their in vitro interconversion during cell extraction. Tyrosine aminotransferase extracted from cell subjected to various treatments that affect the rates of enzyme synthesis or degradation existed always predominantly as form III. It appears, therefore, that multiple forms of tyrosine aminotransferase are not related to the turnover of this enzyme in vivo.  相似文献   

8.
Ecdysteroids secreted by prothoracic glands of Pieris brassicae were measured by enzyme immunoassay, after HPLC separation. Both ecdysone and 3-dehydroecdysone, as a major product, are produced. Two radiolabelled putative precursors were converted by Pieris glands in vitro: [3H] ketodiol was converted into ecdysone at a low rate; [3H]3-oxoketodiol was efficiently converted, mainly into 3-dehydroecdysone. These data make 3-oxoketodiol a good candidate for an intermediate in ecdysteroid biosynthetic pathway.  相似文献   

9.
Lipophilic 6-chloro-2',3'-dideoxyguanosine (6-Cl-ddG) was evaluated for its improved lymph node delivery by comparison with the parental nucleoside (ddG) in vitro and in vivo. The in vitro studies with rat plasma, lymph node homogenate and stomach content indicated that 6-Cl-ddG converted to ddG more effectively in the lymph node homogenate and that 6-Cl-ddG was more stable than ddG in the stomach content. In an in vivo study, plasma and lymph nodes were collected from rats after a subcutaneous or oral administration of 6-Cl-ddG or ddG. With the subcutaneous administrations of the drugs, the area under the concentration time-curve (AUC) value in the plasma for converted ddG following a 6-Cl-ddG administration was less than half the value for ddG following a ddG administration but the converted ddG AUC values in the lymph nodes due to 6-Cl-ddG administration were 1.4- to 2.0-fold higher than the ddG AUC values due to ddG administration. Moreover, with the oral administrations, the converted ddG AUC value in plasma after a 6-Cl-ddG administration was 3-fold higher than ddG after a ddG administration, and high levels of converted ddG were detected in the lymph nodes, but no ddG was detected in the lymph node following ddG administration. These results suggest that lipophilic 6-Cl-ddG is a useful prodrug for delivering ddG into the lymph nodes by oral administration.  相似文献   

10.
Physiological concentrations (10(-10) M) of L-thyroxine and triiodo-L-thyronine were found in vitro to enhance Ca2+-ATPase activity in reticulocyte-enriched red cell membranes from female rabbits and to inhibit this enzyme in the male reticulocyte. Cross-incubation experiments with reticulocyte-enriched red cells and plasma from the opposite sex demonstrated that this sex-specific membrane response to thyroid hormone was transferable by plasma. Similar experiments with intact reticulocytes exposed to physiological concentrations (10(-11) M) of testosterone and 17 beta-estradiol indicated that the plasma factors were the sex steroids. That is, incubation in vitro with testosterone converted female-source reticulocytes to male-type responsiveness to thyroid hormone (inhibition of Ca2+-ATPase activity); incubation with estradiol converted male-source reticulocyte-enriched red cells to female-type responsiveness (stimulation by iodothyronines of membrane Ca2+-ATPase activity). Similar results were obtained when reticulocyte ghosts were incubated with testosterone and 17 beta-estradiol prior to determination of membrane enzyme activity. Etiocholanolone (5 beta-androstan-3 alpha-ol-17-one) and testosterone were equipotent, but 5 alpha-dihydrotestosterone had little activity in this system. Estrone and estradiol were equipotent, but estriol had no permissive effect on the stimulation by iodothyronine of reticulocyte membrane Ca2+-ATPase activity. Expression of thyroid hormone action in vitro on Ca2+-ATPase activity in the rabbit reticulocyte is determined at the membrane level by testosterone and estrogen. The structure-activity relationships of the sex steroids for this membrane action are different than those reported for nuclear actions of the steroids.  相似文献   

11.
Corticosteroi-induced tyrosine aminotransferase (EC 2.6.1.5) from cultured hepatoma cells was separated by carboxymethyl-Sephadex chromatography into three molecular forms resembling those described previously in the rat liver. Enzyme forms were isolated and used as purified substrates to examine their in vitro interconversion by various subcellular fractions. Isolated form III was converted to forms II and I, and isolated form II was converted to form I by the coarse particulate fraction sedimenting at 1000 × g. This activity was inhibited by the serine enzyme inhibitor phenylmethane sulfonyl fluoride or by raising the pH to 8.7. Conversion of enzyme forms in vitro in the opposite direction (I → II → III) could not be detected. The distribution of enzyme forms in vivo was examined by the use of experimental conditions that prevent their in vitro interconversion during cell extraction. Tyrosine aminotransferase extracted from cells subjected to various treatments that affect the rates of enzyme synthesis or degradation existed always predominantly as form III. It appears, therefore, that multiple forms of tyrosine aminotransferase are not related to the turnover of this enzyme in vivo.  相似文献   

12.
《The Journal of cell biology》1995,130(5):1027-1039
Golgi stacks were previously shown to be converted into tubular networks when incubated in mitotic cytosol depleted of the coatomer subunit of COP I coats (Misteli and Warren, 1994). Similar, though smaller, networks are now shown to be an early intermediate on the Golgi fragmentation pathway both in vitro and in vivo. Their appearance mirrors the disappearance of Golgi cisternae and at their peak they constitute 35% of total Golgi membrane. They are consumed by two pathways, the first involving the budding of COP I-coated vesicles described previously (Misteli and Warren, 1994). The second involves a COP I-independent mechanism that leads eventually to a vesicle fraction that is larger in size and more heterogeneous than that produced by the COP I-mechanism. We suggest that both pathways operate concurrently at the onset of mitotic fragmentation. The COP I-independent pathway converts cisternae into tubular networks that then fragment. The COP I- dependent pathway partially consumes first the cisternae at the beginning of the incubation and then the tubular networks that form from them.  相似文献   

13.
Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) is a protein belonging to the subtilisin-like superfamily of serine proteases (subtilases). PfSUB-1 undergoes extensive posttranslational proteolytic processing. The primary translation product is converted in the parasite endoplasmic reticulum to p54. This is further processed to p47, which accumulates in secretory organelles within the merozoite. Here, we present a detailed study of this processing. In vitro translated PfSUB-1 showed no capacity to undergo autocatalytic processing. However, parasite extracts contain a protease that cleaves the in vitro translated proprotein between Asp(219) and Asn(220) to form two products of 31 (p31) and 54 kDa; the latter was indistinguishable from authentic p54 and remained complexed with p31 in a noncovalent interaction characteristic of that between a subtilase prodomain and its cognate catalytic domain. Cross-linking studies showed that this complex also exists in the parasite. Expression of PfSUB-1 in recombinant baculovirus also resulted in processing to p54. Mutation of the predicted active site serine abolished processing. Recombinant p54 was secreted in a complex with p31, and could be further converted to p47 in vitro. Conversion required calcium, was an intramolecular autocatalytic process, and involved a second cleavage between Asp(251) and Ala(252). A decapeptide based on sequence flanking Asp(219) was efficiently cleaved by recombinant PfSUB-1. We conclude that PfSUB-1 is a subtilase with an unusual substrate specificity and that it is activated by two autocatalytic processing steps.  相似文献   

14.
The conversion of l-glutamate to delta-aminolevulinate, in preparations of cucumber etiochloroplasts incubated in vitro, was inhibited by protoheme IX and Mg-protoporphyrin IX. Mg-protoporphyrin IX was destroyed in the presence of air and plastids; this breakdown was accelerated by S-adenosyl methionine. Mg-protoporphyrin IX was also converted to protochlorophyllide in vitro. This conversion exhibited an absolute requirement for atmospheric oxygen and was strongly stimulated by S-adenosyl methionine and by darkness.Based on these results, and on the results of the preceding paper (Spiller, Castelfranco, Castelfranco 1981 Plant Physiol 68: 107-111), a comprehensive hypothesis for the role of O(2) and Fe in chlorophyll biosynthesis is formulated.  相似文献   

15.
Using two enzymes purified from the white-rot fungus, Polyporus obtusus, 5% solutions of D-glucose have been quantitatively converted in vitro into D-arabino-hexos-2-ulose (D-glucosone) and subsequently into a compound having antimicrobial activity. The antibiotic has been shown by nuclear magnetic resonance and mass spectroscopy to be chemically identical to a previously described fungal metabolite known as cortalcerone. Based on kinetic analysis of the synthetic process, a pathway for the biosynthesis of cortalcerone is proposed, involving both chemical rearrangement and enzymically catalyzed steps. Two enzymes, pyranose 2-oxidase and a previously uncharacterized D-arabino-hexos-2-ulose-utilizing enzyme, may be sufficient for the biosynthesis of cortalcerone from glucose in vivo. The D-arabino-hexos-2-ulose-utilizing enzyme dehydrates certain aldosuloses and has been named aldos-2-ulose dehydratase. The enzyme, which appears to be a dimer of 95-kDa subunits, has been purified 450-fold. Additional properties of aldos-2-ulose dehydratase are described, including its apparent ability to catalyze two different steps in the proposed biosynthetic pathway for cortalcerone.  相似文献   

16.
17.
In Bacillus subtilis, uracil (Ura), uridine (Urd), and deoxyuridine (dUrd) are metabolized through pathways similar to those of enteric bacteria. Ura is probably converted to uridine 5'-monophosphate by uridine 5'-monophosphate pyrophosphorylase. More than 95% of dUrd added to cultures is converted to Ura and deoxyribose-1-phosphate. Although dUrd kinase activity is detectable in vitro, this enzyme does not seem to play an important role in the metabolism of dUrd. The metabolism of cytosine (Cyt), cytidine (Cyd), and deoxycytidine (dCyd) in B. subtilis appears to be different from that in enteric bacteria. Cytosine cannot be used by Ura-requiring mutants as pyrimidine source. dCyd is deaminated by dCyd-Cyd deaminase or phosphorylated to dCyd nucleotides by dCyd kinase. Cyd is deaminated by dCyd-Cyd deaminase of phosphorylated by Cyd kinase. This Cyd kinase activity has never been reported for B. subtilis.  相似文献   

18.
In order to measure the distribution of radioactivity present in the side chain of [24,25-3H]cholesterol prepared by a sequence involving catalytic tritiation of 3 alpha, 5 alpha-cyclocholest-24-en-6 beta-ol 6-methyl ether, the cholesterol was oxidized to 4-cholesten-3-one, which was then cleaved between C-24 and C-25 to afford the C24 alcohol. Oxidation to the corresponding cholenoic acid, followed by alkali equilibration and esterification completed the sequence. It was found that about 20% of the tritium in the labeled cholesterol is not lost when this tracer is physiologically converted to bile acids. Consequently, measurements of bile acid formation using this tracer must be corrected upward by this amount.  相似文献   

19.
An Arthrobacter sp. metabolizes L-tyrosine by a pathway involving 3,4-dihydroxyphenylacetate as a key intermediate. p-Hydroxyphenylpyruvate is formed from tyrosine by an amino-transferase specifically requiring alpha-ketoglutarate for activity, and is then converted to p-hydroxyphenylacetate by an oxidative decarboxylation. p-Hydroxyphenylacetaldehyde is not an intermediate in the formation of p-hydroxyphenylacetate. Extracts of the bacterium oxidize 3,4-dihydroxyphenylacetate to delta-carboxymethyl-alpha-hydroxymuconic acid which, when supplemented with 2 mol of diphosphopyridine dinucleotide, results in the production of stoichiometric amounts of succinate and pyruvate.  相似文献   

20.
Pseudomonas (Comamonas) testosteroni T-2 completely converted p-toluenesulphonic acid (TS) or p-sulphobenzoic acid (PSB) to cell material, CO2 and sulphate, with growth yields of about 5 g protein (mol C)-1. PSB and sulphite were excreted as transient intermediates during growth in TS-salts medium. All reactions of a catabolic pathway involving sidechain oxidation and cleavage of the sulphonate moiety as sulphite were measurable in the soluble portion of cell extracts. Degradation of TS and PSB was inducible and apparently involved at least two regulons. TS was converted to p-sulphobenzyl alcohol in a reaction requiring NAD(P)H and 1 mol O2 (mol TS)-1. This alcohol was in an equilibrium (in the presence of NAD+) with p-sulphobenzaldehyde, which was converted to PSB in an NAD(P)+-dependent reaction. PSB was desulphonated to protocatechuic acid in a reaction requiring NAD(P)H and 1 mol O2 (mol PSB)-1. Experiments with 18 O2 confirmed involvement of a dioxygenase, because both atoms of this molecular oxygen were recovered in protocatechuate. Protocatechuate was converted to 2-hydroxy-4-carboxymuconate semialdehyde by a 4.5-dioxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号