首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Growth of choriocarcinoma cells in the presence of 5-bromo-2′-deoxyuridine (BrdUrd) results in a 30- to 40-fold increase in alkaline phosphatase activity. The effect of BrdUrd is specific for phosphatase with an alkaline pH optimum. The induction by BrdUrd is probably not due to the production of an altered enzyme, since the induced enzyme resembles the basal enzyme in thermal denaturation and kinetic properties. Enzyme induction can be prevented by thymidine but not by deoxycytidine or deoxyuridine. The induction of alkaline phosphatase appears to require incorporation of the BrdUrd into cellular DNA. The presence of BrdUrd in the growth medium is not necessary for alkaline phosphatase induction in proliferating cells containing: BrdUrd-substituted genomes. However, enzyme induction and maintenance of the induced levels of alkaline phosphatase in nonproliferating cells containing BrdUrd-substituted DNA requires the presence of the analogues in the medium. The induction of alkaline phosphatase by BrdUrd in probably an indirect process.  相似文献   

2.
Chinese hamster cells, containing BrdUrd-substituted DNA, were irradiated in the presence of 3-aminobenzamide with short-wave UV, long-wave UV or X-rays and analyzed for induced SCEs or chromosomal aberrations. The data presented in this paper show that when BrdUrd-substituted cells are irradiated with lw-UV in the presence of 3-aminobenzamide, genetic damage is increased. Biochemical analysis shows that the molecular weight of BrdUrd-substituted DNA is reduced by this treatment. The sensitization is due to the combined action of lw-UV, incorporated BrdUrd and 3-aminobenzamide, without any involvement of inhibition of poly(ADP-ribose) synthetase. No potentiation occurs when cells are irradiated with X-rays and genetic damage is decreased when cells are irradiated with UV light of 254 nm in the presence of 3AB. This decrease coincides with a reduction in the amount of induced pyrimidine dimers, detected as T4 endonuclease-sensitive sites in DNA.  相似文献   

3.
4.
5-Bromo-2'-deoxyuridine (BrdUrd) stimulated the biosynthesis and hence increased the activity of placental alkaline phosphatase in choriocarcinoma cells. While BrdUrd had no effect on the rate of degradation or processing of placental alkaline phosphatase, it increased the rate of phosphatase synthesis. The stimulation of enzyme activity could be completely accounted for by the increase in alkaline phosphatase protein. Both control and BrdUrd-induced cells contained polypeptides of 61,500 and 64,500 Da, identified as the precursor and fully processed forms of placental alkaline phosphatase monomer. The half-life of this enzyme monomer in both control and BrdUrd-treated cells was estimated to be 36 h. BrdUrd induced a specific increase in the placental alkaline phosphatase mRNA leading to the observed enhancement of biosynthesis. The continued rise in alkaline phosphatase biosynthesis in BrdUrd-induced cells following BrdUrd removal indicated that this analog acted by incorporation into DNA.  相似文献   

5.
Experiments have been performed to investigate whether BrdUrd- and CldUrd-substituted DNA contains lesions causing a delay in cell-cycle progression and induction of chromosomal aberrations. The presence of lesions has been determined directly by alkaline sucrose gradient and nucleoid sedimentation analysis and indirectly by screening for induced chromosomal aberrations. The influence of inhibitors of DNA repair (caffeine and 3-aminobenzamide) or DNA synthesis (hydroxyurea) on the frequencies of such aberrations has been estimated. It is found that BrdUrd and CldUrd are cytotoxic when present in DNA. No randomly located DNA breaks could be detected under neutral conditions, but BrdUrd-substituted DNA was found to contain numerous alkali-labile sites. CldUrd at high concentrations causes G2 delay, similar to the action of known DNA-damaging agents. The extent of delay depends on the pattern of incorporation of the analogue, i.e., incorporation for two cell cycles causes the longest delay, growth for 12 h in CldUrd followed by 12 h in dThd-containing medium causes a lesser delay and the delay is not significant when the cells are incubated in the analogue for only 12 h prior to fixation. Numerous chromatid type aberrations are present in cells incubated at the highest CldUrd concentration, and their induction follows the pattern of induction of G2 delay, indicating the sharing of a common lesion. Caffeine, 3-aminobenzamide and hydroxyurea increase the number of chromosomal aberrations when added 2 h before fixation. The significance of these results is discussed.  相似文献   

6.
The majority of the high (12-fold elevated) baseline sister-chromatid exchanges (SCEs) that occur in the CHO mutant line EM9 appear to be a consequence of incorporated BrdUrd, and they arise during replication of DNA containing BrdUrd in a template strand. In normal CHO cells the alkaline elution patterns of DNA newly replicated on a BrdUrd-containing template are significantly altered compared with those seen during the replication on an unsubstituted template. The nascent DNA synthesized on such an altered template is delayed in reaching mature size, possibly because replication forks are temporarily blocked at sites occurring randomly along the template. Transient blockage of replication forks may be a prerequisite for SCE. The delay in replication on BrdUrd-substituted templates was greater in EM9 cells than in parental AA8 cells and was also greater in AA8 cells treated with benzamide, an inhibitor of poly(ADPR) polymerase, than in untreated AA8 cells. Under these conditions, treatment with benzamide also produced a 7-fold increase in SCEs in AA8. An EM9-derived revertant line that has a low baseline SCE frequency showed less delay in replication on BrdUrd-substituted templates than did EM9. However, under conditions where the template strand contained CldUrd, which was shown to produce 4-fold more SCEs than BrdUrd in AA8 cells, the replication delay in AA8 was not any greater in the CldUrd-substituted cells. Thus, other factors besides the delay appear to be involved in the production of SCEs by the template lesions resulting from incorporation of the halogen-substituted pyrimidine molecules.  相似文献   

7.
Production of the glycoprotein hormone common alpha-subunit and placental alkaline phosphatase activity can be modulated in HeLa cells by a variety of deoxynucleosides. Dose response curves for thymidine (Thd), fluorodeoxyuridine (FdUrd), bromodeoxyuridine (BrdUrd) and iododeoxyuridine (IdUrd) demonstrate that, in general, alkaline phosphatase was increased by lower concentrations of inducer than was alpha-subunit. The deoxynucleosides were not as effective as sodium butyrate as inducers of either protein. Whereas Thd and the halogenated dUrd derivatives enhanced protein expression, deoxycytidine (dCyd) had negative effects. Induction by deoxynucleosides of both alkaline phosphatase and alpha-subunit was inhibited by dCyd, but induction of alkaline phosphatase by butyrate was more sensitive to dCyd inhibition than was the butyrate-mediated induction of alpha-subunit. These results suggest that the two proteins are not regulated in a coordinate manner. Reversal of alkaline phosphatase induction by dCyd was not observed in cells preincubated with sodium butyrate for 6-24 h before the addition of dCyd, indicating that the deoxynucleoside interferes with an early event in the butyrate-mediated response. Combinations of butyrate with Thd, BrdUrd or IdUrd were synergistic with respect to the induction of HeLa-alpha. It is concluded that incorporation of the deoxynucleosides into DNA may not be required for the synergistic response since 2',5'-dideoxythymidine was an effective as Thd. Cytoplasmic dot hybridizations demonstrate that a primary effect of the various effectors is to increase the steady-state levels of alpha-subunit mRNA. There was a good correlation between alpha-subunit accumulation and corresponding levels of alpha-mRNA, suggesting that regulation occurs at a pretranslational site. Although the mechanism(s) is not understood, these data provide evidence that nucleosides or their derivatives can significantly affect gene expression.  相似文献   

8.
9.
The alkaline phosphatase content of different tissue culture cell lines has been shown to vary from no detectable activity to high enzyme concentration. Within the epithelial lines studied alkaline phosphatase is either constitutive or inducible. Two epithelial cell strains in which alkaline phosphatase was "absent" could be induced to develop significant amounts of the enzyme when grown in the presence of Δ1-hydrocortisone. Phosphate did not repress enzyme induction by prednisolone. Under conditions of deadaptation the induced enzyme was diluted by cell multiplication. The mouse fibroblastic L line and several human fibroblastic lines did not contain alkaline phosphatase when grown under the conditions described nor could they be induced to produce the enzyme when cultivated in medium with prednisolone. Δ1-Hydrocortisone has other characteristic effects on established mammalian cell cultures which vary among cell lines. Human epithelial lines show reduction in cell multiplication with increase in mitotic index. The cytoplasm is increased and cell volume is nearly doubled. Mouse fibroblasts show a similar reduction in cell multiplication with a decrease in mitotic index. There is no increase in cell cytoplasm. Human fibroblast strains show no inhibition of multiplication or alteration in total cell protein when grown in medium containing prednisolone. Antisera prepared against "negative" prednisolone-inducible human cell lines and against a positive human line inhibited alkaline phosphatase activity to an equal degree.  相似文献   

10.
The level of alkaline phosphatase in a number of established cell lines of human origin can be modified by exposure to non-lethal concentrations of bromodeoxyuridine (BRdU).In the several cell lines examined an inverse relationship between amount of induction and constitutive level of the enzyme was observed. Thus, the H.Ep 2 line, which had the highest basal level of enzyme, was reversibly repressed following exposure to the drug, whereas other cell lines with relatively low constitutive enzyme levels were induced to a maximum of 10-fold following exposure. Initiation of induction required from 24 to 48 hours, and as short an exposure ("pulse") as five hours was sufficient to produce induction. Exposure to visible light had no effect upon the repression of alkaline phosphatase in H.Ep 2 by BRdU. Induction did not occur in non-dividing, serum starved cells. The time course of induction by BRdU and hydrocortisone was similar, and simultaneous exposure of the cells to both agents resulted in no greater induction than that observed with either drug alone. Experiments utilizing mitomycin C yielded significant induction in the presence of this agent alone, and somewhat less induction when both mitomycin C and BRdU were added simultaneously. These results suggest that DNA synthesis is required for BRdU were added simultaneously. These results suggest that DNA synthesis is required for BRdU-mediated induction of alkaline phosphatase.  相似文献   

11.
Reduction in alkaline phosphatase activity was observed when HeLa S3 cells were grown in Puck's medium containing high concentrations of human serum. This effect was not seen with the enzyme of Chang liver 8A cells. The induction of increased alkaline phosphatase in HeLa S3 by prednisolone or by osmolality changes was not prevented by serum. The concentration of serum in the culture medium had no influence on acid phosphatase activity.  相似文献   

12.
The effect of 5-bromo-2'-deoxyuridine (BrdUrd) and dibutyryl cyclic AMP (Bt2cAMP) on the expression of the placental isoenzyme of human alkaline phosphatase was examined in BeWo choriocarcinoma cells. By using a combination of specific immunoprecipitation and polyacrylamide-gel electrophoresis of cells labelled either metabolically with [35S]methionine or cell-surface-labelled with 125I, both BrdUrd (5 micrograms/ml) and 1 mM-Bt2cAMP were shown to result in the enhanced accumulation of a specific protein. This protein has immunochemical identity and co-electrophoreses with placental alkaline phosphatase in two-dimensional gels. These results clearly demonstrate that the induction of placental alkaline phosphatase activity in choriocarcinoma cells treated with these agents is a consequence of the accumulation of specific enzyme protein rather than of altered catalytic activity.  相似文献   

13.
Production of the glycoprotein hormone common α-subunit and placental alkaline phosphatase activity can be modulated in HeLa cells by a variety of deoxynucleosides. Dose response curves for thymidine (Thd), fluorodeoxyuridine (FdUrd), bromodeoxyuridine (BrdUrd) and iododeoxyuridine (IdUrd) demonstrate that, in general, alkaline phosphatase was increased by lower concentrations of inducer than was α-subunit. The deoxynucleosides were not as effective as sodium butyrate as inducers of either protein. Whereas Thd and the halogenated dUrd derivatives enhanced protein expression, deoxycytidine (dCyd) had negative effects. Induction by deoxynucleosides of both alkaline phosphatase and α-subunit was inhibited by dCyd, but induction of alkaline phosphatase by butyrate was more sensitive to dCyd inhibition than was the buryrate-mediated induction of α-subunit. These results suggest that the two proteins are not regulated in a coordinate manner. Reversal of alkaline phosphatase induction by dCyd was not observed in cells preincubated with sodium butyrate for 6–24 h before the addition of dCyd, indicating that the deoxynucleoside interferes with an early event in the butyrate-mediated response. Combinations of butyrate with Thd, BrdUrd or IdUrd were synergistic with respect to the induction of HeLa-α. It is concluded that incorporation of the deoxynucleosides into DNA may not be required for the synergistic response since 2′,5′-dideoxythymidine was an effective as Thd. Cytoplasmic dot hybridizations demonstrate that a primary effect of the various effectors is to increase the steady-state levels of α-subunit mRNA. There was a good correlation between α-subunit accumulation and corresponding levels of α-mRNA, suggesting that regulation occurs at a pretranslational site. Although the mechanism(s) is not understood, these data provide evidence that nucleosides or their derivatives can significantly affect gene expression.  相似文献   

14.
Alkaline phosphatese activity of HeLa cells is increased from 3- to 8-fold during growth in medium with certain aliphatic monocarboxylates. The four-carbon fatty acid salt, sodium butyrate, is the most effective “inducer” with propionate (C3), pentanoate (C5) and hexanoate (C6) having lesser effects. Other straight-chain aliphatic monocarboxylates, branched-chain analogues of inducers, hydroxylated derivatives, and metabolytes structurally related to butyrate are ineffective in mediating an increase in enzyme activity, indicating stringent structural requirements for inducers. The kinetics of increase in alkaline phosphatase activity in HeLa cells shows a 20–30 h lag period after adding the aliphatic acid followed by a rapid linear increase of enzyme activity. Protein synthesis is required for “induction”. The isozyme of HeLa alkaline phosphatase induced by monocarboxylates is the carcinoplacental form of the enzyme as determined by stereospecific inhibition by the l-enantiomorphs of phenylalanine and tryptophan, heat stability, and immunoreactivity with antibody against the human placental enzyme.Monocarboxylates that mediate increased alkaline phosphatase activity inhibit HeLa cell multiplication. Inhibition of HeLa cell growth may be necessary for induction and this hypothesis is supported by the findings that three different inhibitors of DNA synthesis, i.e. hydroxyurea, 1-β-d-arabinfuranosyl cytosine and methotrexate, also increase alkaline phosphatase activity. These inhibitors are synergistic with butyrate in causing HeLa cells to assume a more spindle-like shape and in producing an up-to 25-fold increase of enzyme activity. Studies on the modulation of carcinoplacental alkaline phosphatase by monocarboxylates commonly used as antimicrobial food additives and by anti-neoplastic agents may provide methods to evoke “tumor markers” of human occult malignancies. These drug-induced elevations of fetal isozyme activity may further our understanding of gene expression in human cells.  相似文献   

15.
Alkaline phosphatase is induced in cultured human choriocarcinoma cells by three inhibitors of DNA synthesis which alter DNA structure: 1-β-D-arabinofuranosyl-cytosine, mitomycin C, and phleomycin. No induction is observed with the inhibitors, hydroxyurea and thymidine, which do not alter DNA structure. Cyclic AMP, analogs of cyclic nucleotides, and sodium butyrate also induce alkaline phosphatase in these cells. Among the cyclic nucleotides tested, dibutyryl cyclic AMP is the best inducer, whereas dibutyryl cyclic GMP is a poor inducer. Induction of alkaline phosphatase by inhibitors of DNA synthesis or by exposure to dibutyryl cyclic AMP appears to utilize different mechanisms. Maximum induction is observed after simultaneous addition of both types of inducers at the concentrations found to be optimal for each inducer alone. Under these conditions, the induced activity is equal to or greater than the sum of the activities induced by each inducer. RNA synthesis and protein synthesis are required for induction. Dibutyryl cyclic AMP added to cultures of choriocarcinoma cells is not degraded in the culture medium, but is extensively degraded in the cells. Nevertheless, significant amounts of dibutyryl and monobutyryl cyclic AMP are found intracellularly throughout the experiment. Since the cellular uptake of dibutyryl cyclic AMP is extremely slow, the amount of butyrate released by intracellular degradation cannot account for the observed induction. Neither the rate of uptake nor the stability of dibutyryl cyclic AMP are changed by the addition of 1-β-D-arabinofuranosyl-cytosine to the culture medium. Furthermore, 1-β-D-arabinofuranosyl-cytosine inhibits the induction by sodium butyrate. The results indicate that butyrate is not the major mediator of induction by dibutyryl cyclic AMP.  相似文献   

16.
The effect of transferrin was tested on osteoblastic cells (clone MC3T3-E1) cultured in serum-free medium containing 1% bovine serum albumin (BSA). Transferrin (Tf) stimulated increases of protein content and protein synthesis, but not of DNA content and cell number, in the cells. This protein also increased alkaline phosphatase activity and collagen synthesis in combination with 1% BSA. Actinomycin D and cycloheximide inhibited alkaline phosphatase activity induced by Tf, suggesting that Tf may enhance de novo synthesis of the enzyme. These results indicate that Tf may be involved in differentiation of osteoblastic cells, but not in their proliferation, in vitro.  相似文献   

17.
18.
Haemophilus influenzae was labeled with thymidine-3H (dThd), then grown in the presence of 5-bromodeoxyuridine (BrdUrd), and then irradiated with 313 nm light (a wavelength that selectively photolyzes DNA containing 5-bromouracil [BrUra]). Irradiation with 313 nm light induced breaks in the 3H-labeled strands in cells grown with BrdUrd at a much higher frequency than in 14C-labeled DNA of cells not exposed to BrdUrd. Breakage of the 3H-labeled strands was about 0.6% as efficient as that of fully BrUra-substituted DNA. During growth in the presence of BrdUrd, susceptibility to 313 nm-induced breakage of the 3H-labeled DNA strands increased, reaching a maximum in about one generation, and it decreased to zero during subsequent growth for one generation in medium containing dThd instead of BrdUrd. Heat denaturation of DNA extracted from dThd-3H-labeled cells grown in the presence of BrdUrd eliminated 313 nm-induced breakage of the 3H-labeled strands. It is concluded that breakage of the 3H-labeled DNA strands resulted from reaction with photoproducts in the base-paired, BrUra-containing strands, rather than from photolysis of BrdUrd incorporated into parental strands. It may be possible to utilize the phenomenon of interstrand breakage in physical studies of DNA replication.  相似文献   

19.
The increase in alkaline phosphatase in asynchronous cultures of HeLa S3 cells grown in medium supplemented with hydrocortisone is characterized by a lag period of 10–12 hr. Present studies utilizing synchronous cell populations indicate: (a) a minimum of 8–10 hr of incubation with hydrocortisone is necessary for maximum induction of alkaline phosphatase; (b) the increase in enzyme activity produced by hydrocortisone is initiated exclusively in the synthetic phase of the cell cycle; (c) alkaline phosphatase activity does not vary appreciably over a normal control cell cycle. Radioactive hydrocortisone is rapidly distributed into HeLa cells irrespective of their position in the cell cycle, indicating that inductive effects are not governed by selective permeability during the cell cycle. Hydrocortisone-1,2-[3H] diffuses back from the cell into the medium when the cells are incubated in fresh medium containing no hydrocortisone, and the alkaline phosphatase induction, under these conditions, is completely reversible.  相似文献   

20.
Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号