首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the long-standing observation of vast neuronal loss in Alzheimer's disease (AD) our understanding of how and when neurons are eliminated is incomplete. While previous investigation has focused on apoptosis, several novel forms of cell death (i.e. necroptosis, parthanatos, ferroptosis, cuproptosis) have emerged that require further investigation. This review aims to collect evidence for different modes of neuronal cell death in AD and to also discuss how these different forms of cell death may impact the neuroinflammatory environment that prevails in the AD brain. Improved understanding of how neurons die may help to delineate disease pathogenesis, provide insights toward treatment, and aid in the development of improved animal models of AD.  相似文献   

2.
Although apolipoprotein (apo) E is synthesized in the brain primarily by astrocytes, neurons in the central nervous system express apoE, albeit at lower levels than astrocytes, in response to various physiological and pathological conditions, including excitotoxic stress. To investigate how apoE expression is regulated in neurons, we transfected Neuro-2a cells with a 17-kilobase human apoE genomic DNA construct encoding apoE3 or apoE4 along with upstream and downstream regulatory elements. The baseline expression of apoE was low. However, conditioned medium from an astrocytic cell line (C6) or from apoE-null mouse primary astrocytes increased the expression of both isoforms by 3-4-fold at the mRNA level and by 4-10-fold at the protein level. These findings suggest that astrocytes secrete a factor or factors that regulate apoE expression in neuronal cells. The increased expression of apoE was almost completely abolished by incubating neurons with U0126, an inhibitor of extracellular signal-regulated kinase (Erk), suggesting that the Erk pathway controls astroglial regulation of apoE expression in neuronal cells. Human neuronal precursor NT2/D1 cells expressed apoE constitutively; however, after treatment of these cells with retinoic acid to induce differentiation, apoE expression diminished. Cultured mouse primary cortical and hippocampal neurons also expressed low levels of apoE. Astrocyte-conditioned medium rapidly up-regulated apoE expression in fully differentiated NT2 neurons and in cultured mouse primary cortical and hippocampal neurons. Thus, neuronal expression of apoE is regulated by a diffusible factor or factors released from astrocytes, and this regulation depends on the activity of the Erk kinase pathway in neurons.  相似文献   

3.
4.
5.
6.
The last year has seen major advances in the study of Alzheimer's disease (AD). Four mutations involving amino acid substitutions in exons 16 and 17 of the amyloid precursor protein (APP) gene, have been identified which co-segregate with the disease in some families multiply affected by early onset Alzheimer's disease. These mutations are strongly suggestive of a causative role for the amyloid precursor protein in Alzheimer's disease. Despite their rarity, these mutations are important because they represent the first known cause of Alzheimer's disease. Processing of APP must be central to the pathogenesis of the disease although the precise effects of these amino acid substitutions are not understood. Work is now being undertaken to characterise the processing pathways of APP and to identify other causes of AD. The development of models of AD using the APP mutations offers the possibility of identifying drug targets and developing more effective treatments than are presently available.  相似文献   

7.
The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disease. A promising strategy to achieve prevention of this disease is to discover compounds that inhibit Abeta polymerization and deposition. Herein, we describe a new class of small molecules that inhibit Abeta aggregation, which is based on the chemical structure of apomorphine. These molecules were found to interfere with Abeta1-40 fibrillization as determined by transmission electron microscopy, Thioflavin T fluorescence and velocity sedimentation analytical ultracentrifugation studies. Using electron microscopy, time-dependent studies demonstrate that apomorphine and its derivatives promote the oligomerization of Abeta but inhibit its fibrillization. Preliminary structural activity studies demonstrate that the 10,11-dihydroxy substitutions of the D-ring of apomorphine are required for the inhibitory effectiveness of these aporphines, and methylation of these hydroxyl groups reduces their inhibitory potency. The ability of these small molecules to inhibit Abeta amyloid fibril formation appears to be linked to their tendency to undergo rapid autoxidation, suggesting that autoxidation product(s) acts directly or indirectly on Abeta and inhibits its fibrillization. The inhibitory properties of the compounds presented suggest a new class of small molecules that could serve as a scaffold for the design of more efficient inhibitors of Abeta amyloidogenesis in vivo.  相似文献   

8.
In addition to progressive dementia, Alzheimer's disease (AD) is characterized by increased incidence of seizure activity. Although originally discounted as a secondary process occurring as a result of neurodegeneration, more recent data suggest that alterations in excitatory-inhibitory (E/I) balance occur in AD and may be a primary mechanism contributing AD cognitive decline. In this study, we discuss relevant research and reports on the GABA(A) receptor in developmental disorders, such as Down syndrome, in healthy aging, and highlight documented aberrations in the GABAergic system in AD. Stressing the importance of understanding the subunit composition of individual GABA(A) receptors, investigations demonstrate alterations of particular GABA(A) receptor subunits in AD, but overall sparing of the GABAergic system. In this study, we review experimental data on the GABAergic system in the pathobiology of AD and discuss relevant therapeutic implications. When developing AD therapeutics that modulate GABA it is important to consider how E/I balance impacts AD pathogenesis and the relationship between seizure activity and cognitive decline.  相似文献   

9.
10.
Summary

Ozone, though not a free radical species, mediates its toxic effects through free radical reactions as a consequence of its high redox potential. Upon inspiration the first physical interface encountered by ozone is a thin layer of aqueous material, the epithelium lining fluid (ELF) which overlays, and is partially derived from, the underlying pulmonary epithelium. ELF is the first physical interface encountered by ozone and the majority of its primary actions are confined to this compartment. ELF contains a range of antioxidants, including the small molecular weight antioxidants: uric acid (UA), ascorbic acid (AH2) and reduced glutathione (GSH). These compounds are present in large quantities and display high intrinsic reactivities toward ozone, consistent with their role as sacrificial substrates in this setting. In this paper we examine the concept that antioxidants, in ELF, represent the first tier of defence against the oxidizing effects of ozone. Since the concentration of these antioxidants appears to differ between individuals, we propose that these protective substances may dictate, in part, an individual's sensitivity to oxidizing air pollutants such as ozone.  相似文献   

11.
The kynurenine pathway (KP) is a major route of L-tryptophan catabolism leading to production of a number of biologically active molecules. Among them, the neurotoxin quinolinic acid (QUIN), is considered to be involved in the pathogenesis of a number of inflammatory neurological diseases. Alzheimer's disease is the major dementing disorder of the elderly that affects over 20 million peoples world-wide. Most of the approaches to explain the pathogenesis of Alzheimer's disease focus on the accumulation of amyloid beta peptide (A beta), in the form of insoluble deposits leading to formation of senile plaques, and on the formation of neurofibrillary tangles composed of hyperphosphorylated Tau protein. Accumulation of A beta is believed to be an early and critical step in the neuropathogenesis of Alzheimer's disease. There is now evidence for the KP being associated with Alzheimer's disease. Disturbances of the KP have already been described in Alzheimer's disease. Recently, we demonstrated that A beta 1-42, a cleavage product of amyloid precursor protein, induces production of QUIN, in neurotoxic concentrations, by macrophages and, more importantly, microglia. Senile plaques in Alzheimer's disease are associated with evidence of chronic local inflammation (especially activated microglia) A major aspect of QUIN toxicity is lipid peroxidation and markers of lipid peroxidation are found in Alzheimer's disease. Together, these data imply that QUIN may be one of the critical factors in the pathogenesis of neuronal damage in Alzheimer's disease. This review describes the multiple correlations between the KP and the neuropathogenesis of Alzheimer's disease and highlights more particularly the aspects of QUIN neurotoxicity, emphasizing its roles in lipid peroxidation and the amplification of the local inflammation.  相似文献   

12.
13.
Therapeutic strategies aimed to treat Alzheimer's disease (AD) may either produce an attenuation of symptoms or slowdown deterioration by attenuating progression of the disease. Presently, cholinesterase inhibitors (ChEI) have shown the most promising therapeutic effects. The best documented clinical efficacy of ChEI are studies of THA (tacrine, tetrahydroaminoacridine). The results of five recent studies in a total of 1,242 patients are discussed. Based on differences from placebo in scoring, a gain of 2–12 (MMSE) or 5–6 (ADAS) in deterioration can be seen for a THA treatment of 2–3 mo duration. This suggests that if treatment with THA will be extended to a longer period, the drug effect may not be only a symptomatic improvement but also a slowdown of disease course. A similarity of THA's effect in AD withl-deprenyl effects in Parkinson's is suggested.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号