首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.  相似文献   

2.
Summary AnEnterobacter species, isolated from electroplating effluent, could remove significant amount of nickel ion (Ni2+) from growth medium and sewage effluent. In order to construct a bioreactor to remove Ni2+ from electroplating effluent, bacterial cells were immobilized in polyacrylamide beads. The highest removal capacity (RC, mg of Ni2+/g of dry cells) and removal efficiency (RE, % of added Ni2+ removed by bacterial cells) of Ni2+ of immobilized bacterial cells were obtained by optimizing the growth conditions for the bacterial cells such as the composition of the growth medium, incubation time and incubation temperature; and the operational parameters of the bioreactor such as retention time and pH of the Ni2+ containing solution, respectively.  相似文献   

3.
Nickel Uptake by Pseudomonas aeruginosa: Role of Modifying Factors   总被引:1,自引:0,他引:1  
Pseudomonas aeruginosa cells growing in minimal medium were 40-fold more sensitive to Ni2+ than cells growing in enriched medium, suggesting a possible protective role of medium ingredients. Likewise, cells pre-grown in enriched medium showed a high K m (6.15 mM) and increased Ni2+ uptake (950 nmol mg−1 protein, 1h) over cells pre-sown in minimal medium (K m , 0.48 mM; 146 nmol mg−1 protein, 1 h). The overall pattern indicates that cells pre-grown in enriched medium were characterized by having lowered affinity towards Ni2+ than those with minimal medium background. The enhanced Ni2+ uptake by enriched medium-grown cells can be correlated with the improved metabolic state of the cells. Ni2+ uptake was optimum at neutrality (pH 7.0). A major Ni2+ transport system was competitively inhibited by Mg2+, Zn2+, Cd2+, or Co2+ (400 μM each). Noticeably, a minor Ni2+ transport pathway was still operative even in the higher concentration range of Mg2+ (4 mM and 40 mM). The stimulation of Ni2+ uptake monitored in the presence of different carbon sources (0.5% wt/vol, each) showed the sequence: glucose (1.6-fold) > phenol = gallic acid (1.5-fold). Succinate, in comparison, reduced Ni2+ uptake (0.5-fold) possibly because of its acting as a metal chelator as well. Sensitivity of Ni2+ transport towards methyl viologen, azide, 2-4 DNP, and DCCD suggested that transport was energy-linked. Received: 13 January 1998 / Accepted: 21 May 1998  相似文献   

4.
A haloalkalitolerant xylanase-producing Bacillus pumilus strain, GESF1 was isolated from an experimental salt farm of CSMCRI. Birch wood xylan and xylose induced maximum xylanase production with considerable activity seen in wheat straw and no activity at all with caboxymethyl cellulose (CMC). A three step purification yielded 21.21-fold purification with a specific activity of 112.42 U/mg protein (unit expressed as μmole of xylose released per min). Xylanase produced showed an optimum activity at pH 8.0, with approximately 50 and 30% relative activity at a pH 6.0 and 10.0, respectively. The temperature optimum was 40°C and kinetic properties such as Km and Vmax were 5.3 mg/mL and 0.42 μmol/min/mL (6593.4 μmol/min/mg protein). Xylanase activity (160∼ 120%) was considerably enhanced in 2.5 to 7.5% NaCl with 87 and 73% retention of activity in 10 and 15% of NaCl. Enzyme activity was enhanced by Ca2+, Mn2+, Mg2+, and Na+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Cu2+, Cd2+, and Zn2+. Organic reagents such as β-Mercaptoethanol enhanced xylanase activity whereas EDTA strongly inhibited its activity. Xylanase, purified from the Bacillus pumilus strain, GESF1 could have potential biotechnological applications.  相似文献   

5.
Treatment of Catharanthus roseus hairy roots with antagonists, like verapamil and CdCl2, that block the Ca2+ flux across the plasma membrane enhanced the total alkaloid content by 25% and their secretion 10 times. The specific Ca2+ chelator, EGTA, stimulated 90% of the total alkaloid secretion. Treatment with inhibitors of intracellular Ca2+ movement, like TMB-8 and trapsigargin, enhanced the total alkaloid content by 74% and their secretion into the culture media by 4- to 6-fold. The results suggest that an inhibition of external and internal Ca2+ fluxes induces an increase in the indole alkaloid accumulation and secretion in C. roseus hairy roots.  相似文献   

6.
Phytase from Nocardia sp. MB 36 was purified (9.65-fold) to homogeneity by acetone precipitation, ion exchange, and molecular sieve chromatography. Native polyacrylamide gel electrophoresis (PAGE) and zymogram analysis showed a single active protein in the purified enzyme preparation. Sodium dodecyl sulfate (SDS)-PAGE analysis showed that phytase was a monomeric protein with a molecular weight of approximately 43 kDa. Phytase exhibited activity and stability over a broad pH range (2–8) and elevated temperatures (50–80°C), and utilized several phosphate compounds as substrates. Phytase was extremely resistant to pepsin and trypsin. Various metal ions viz. Fe2+, Co2+, and Mn2+, and NH4+, ethylenediaminetetraacetic acid or EDTA and phenylmethylsulfonyl fluoride or PMSF had no influence on activity, while Ca2+ and Zn2+ enhanced activity by 15 % and 3.58 %, respectively. SDS caused significant reduction in enzyme activity (41.8 %), while 2,3-butanedione did so moderately (15.9 %). Features of Nocardia sp. MB 36 phytase suggest a potential for animal feed applications.  相似文献   

7.
8.
Cholesterol oxidase production (COD) by a new isolate characterized as Streptomyces sp. was studied in different production media and fermentation conditions. Individual supplementation of 1 % maltose, lactose, sucrose, peptone, soybean meal and yeast extract enhanced COD production by 80–110 % in comparison to the basal production medium (2.4 U/ml). Supplementation of 0.05 % cholesterol (inducer) enhanced COD production by 150 %. COD was purified 14.3-fold and its molecular weight was found to be 62 kDa. Vmax (21.93 μM/min mg) and substrate affinity Km (101.3 μM) suggested high affinity of the COD for cholesterol. In presence of Ba2+ and Hg2+ the enzyme activity was inhibited while Cu2+ enhanced the activity nearly threefold. Relative activity of the enzyme was found maximum in triton X-100 whereas sodium dodecyl sulfate inactivated the enzyme. The enzyme activity was also inhibited by the thiol-reducing reagents like Dithiothreitol and β-mercaptoethanol. The COD showed moderate stability towards all organic solvents except acetone, benzene and chloroform. The activity increased in presence of isopropanol and ethanol. The enzyme was most active at pH 7 and 37 °C temperature. This organism is not reported to produce COD.  相似文献   

9.
Sphingosine-1-phosphate (S1P) regulates cell growth and survival, migration and adhesion in many cell types. S1P is generated by sphingosine kinases (SphKs), and dephosphorylated by phosphatases or cleaved by S1P lyase. Extracellular S1P activates specific G protein-coupled receptors while intracellular S1P can mobilize Ca2+ from thapsigargin-sensitive stores. Here, we have studied Ca2+ signalling in mouse embryonic fibroblasts (MEFs) deficient in S1P lyase. In these cells, S1P and sphingosine concentrations were elevated about 6-fold and 2-fold, respectively, as measured by liquid chromatography/tandem mass spectrometry. Measurements with fura-2-loaded cells in suspension revealed that resting [Ca2+]i was elevated and agonist-induced [Ca2+]i increases were augmented in S1P lyase-deficient MEFs both in the presence and absence of extracellular Ca2+. Importantly, [Ca2+]i increases and Ca2+ mobilization induced by the SERCA inhibitor, thapsigargin, were augmented, indicating enhanced Ca2+ storage in S1P lyase-deficient MEFs. Measurements with single cells expressing the calmodulin-based Ca2+ sensor, cameleon, revealed that at least two cell types could be distinguished in both MEF cell populations, one with a rapid and transient [Ca2+]i increase and the other with a slower and prolonged [Ca2+]i elevation upon stimulation with thapsigargin. The area under the time course of thapsigargin-induced [Ca2+]i increases, reflecting overall Ca2+ release, was significantly increased by more than 50% in both rapidly and slowly responding S1P lyase-deficient cells. It is concluded that elevated concentrations of S1P and/or sphingosine lead to enhanced Ca2+ storage and elevated basal [Ca2+]i. S1P metabolism thus plays a role not only in acute Ca2+ mobilization but also in long-term regulation of Ca2+ homeostasis.  相似文献   

10.
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1?mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.  相似文献   

11.
A tannase (E.C. 3.1.1.20) producing fungal strain was isolated from soil and identified as Aspergillus heteromorphus MTCC 8818. Maximum tannase production was achieved on Czapek Dox minimal medium containing 1% tannic acid at a pH of 4.5 and 30°C after 48 h incubation. The crude enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography. Diethylaminoethyl-cellulose column chromatography led to an overall purification of 39.74-fold with a yield of 19.29%. Optimum temperature and pH for tannase activity were 50°C and 5.5 respectively. Metal ions such as Ca2+, Fe2+, Cu1+, and Cu2+ increased tannase activity, whereas Hg2+, Na1+, K1+, Zn2+, Ag1+, Mg2+, and Cd2+ acted as enzyme inhibitors. Various organic solvents such as isopropanol, isoamyl alcohol, benzene, methanol, ethanol, toluene, and glycerol also inhibited enzyme activity. Among the surfactants and chelators studied, Tween 20, Tween 80, Triton X-100, EDTA, and 1, 10-o-phenanthrolein inhibited tannase activity, whereas sodium lauryl sulfate enhanced tannase activity at 1% (w/v).  相似文献   

12.
Fish scale, the chief waste material of fish processing industries was processed and tested for production of extracellular protease by mutant Aspergillus niger AB100. Protease production by A. niger AB100 was greatly enhanced in presence of processed fish scale powder. Where as among the three complex nutrients tested, soya bean meal shows maximum stimulatory effect over protease production (2,776 μmol/ml/min) when used in combination with glucose (5% w/v) and urea (2.5% w/v). The protease was optimally active at pH 7.0, retaining more than 60% of its activity in the pH range of 5–9. The enzyme was found to be most active at 50°C and stable at 30°C for 1 h. Purification of enzyme by CM-Cellulose and SDS-PAGE resulted in about 26-fold increase in the specific activity of the enzyme with a molecular weight of 30.9 kDa. HPLC study shows the purity of the enzyme as 75.92%. By the activating effect of divalent cations (Fe2+, Zn2+, Mn2+, Ca2+and Mg2+) and inhibiting effect of chelating agent (EDTA) and Hg2+, the enzyme was found to be a metalloprotease.  相似文献   

13.
The transport and hydrolytic activities of the plasma membrane (PM) Ca2+ pump were characterized in a PM fraction purified from seedlings of Arabidopsis thaliana by the aqueous two-phase partitioning technique. Ca2+ uptake could be energized by ATP and by ITP (at about 70% the rate sustained by ATP). This characteristic was used to measure the hydrolytic activity of the enzyme as Ca2+-dependent ITPase activity. The PM Ca2+ pump displayed a broad pH optimum around pH 7.2, was drastically inhibited by erythrosin B (EB), and was half-saturated by 60 μM ITP. It was stimulated by CaM, specially at low, non-saturating Ca2+ concentrations. All of these characteristics closely resemble those of the PM Ca2+ pump in other plant materials. Analysis of the effects of EB and other fluorescein derivatives (eosin Y and rose bengal) showed that: i) EB behaved as a competitive inhibitor with respect to ITP; ii) the PM Ca2+ pump was drastically inhibited by concentrations of fluorescein derivatives (submicromolar), much lower than those required to inhibit the PM H+-ATPase; iii) the different fluorescein derivatives were diversely efficient in inhibiting the activities of the Ca2+ pump and of the H+-ATPase of the PM (eosin Y was about 10000-fold, EB 1000-fold and rose bengal only 50-fold more active on the Ca2+ pump than on the H+-ATPase); and iv) the effectiveness of EB in inhibiting the Ca2+ pump was strongly affected by the protein concentration in the assay medium.  相似文献   

14.
The effects of hydrogel on growth and ion relationships of a salt resistant woody species, Populus euphratica , were investigated under saline conditions. The hydrogel used was Stockosorb K410, a highly cross-linked polyacrylamide with about 40% of the amide group hydrolysed to carboxylic groups. Amendment of saline soil (potassium mine refuse) with 0.6% hydrogel improved seedling growth (2.7-fold higher biomass) over a period of 2 years, even though plant growth was reduced by salinity. Hydrogel-treated plants had approximately 3.5-fold higher root length and root surface area than those grown in unamended saline soil. In addition, over 6% of total roots were aggregated in gel fragments. Tissue and cellular ion analysis showed that growth improvement appeared to be the result of increased capacity for salt exclusion and enhancement of Ca2+ uptake. X-ray microanalysis of root compartments indicated that the presence of polymer restricted apoplastic Na+ in both young and old roots, and limited apoplastic and cytoplastic Cl in old roots while increasing Cl compartmentation in cortical vacuoles of both young and old roots. Collectively, radical transport of salt ions (Na+ and Cl) through the cortex into the xylem was lowered and subsequent axial transport was limited. Hydrogel treatment enhanced uptake of Ca2+ and microanalysis showed that enrichment of Ca2+ in root tissue mainly occurred in the apoplast. In conclusion, enhanced Ca2+ uptake and the increased capacity of P. euphratica to exclude salt were the result of improved Ca2+/Na+ concentration of soil solution available to the plant. Hydrogel amendment improves the quality of soil solutions by lowering salt level as a result of its salt-buffering capacity and enriching Ca2+ uptake, because of the polymers cation-exchange character. Accordingly, root aggregation allows good contact of roots with a Ca2+ source and reduces contact with Na+ and Cl, which presumably plays a major role in enhancing salt tolerance of P. euphratica.  相似文献   

15.
Effects of Ca2+ and calmodulin on the adenylate cyclase activity of a prolactin and growth hormone-producing pituitary tumor cell strain (GH3) were examined. The adenylate cyclase activity of homogenates was stimulated approx. 60% by submicromolar free Ca2+ concentrations and inhibited by higher (μM range) concentrations of the cation. A 2–3-fold stimulation of the activity in response to Ca2+ was observed at physiologic concentrations of KCl, with both the stimulatory and inhibitory responses occurring at respectively higher free Ca2+ concentrations. Calmodulin in incubations at low KCl concentrations increased the enzyme activity at all Ca2+ concentrations tested. In incubations conducted at physiologic KCl concentrations, both the inhibitory and stimulatory responses to Ca2+ were shifted by calmodulin to lower respective concentrations of the cation, without significant change occurring in the maximal rate of enzymic activity at optimal free Ca2+. Mg2+ concentrations in the incubation also influenced the Ca2+ concentration dependence of adenylate cyclase; at high Mg2+ more Ca2+ was required to obtain maximal activity. Trifluoperazine inhibited adenylate cyclase of GH3 cells only in the presence of Ca2+; as Ca2+ concentrations in the assay were increased, higher drug concentrations were required to inhibit the enzyme. Ca2+ was also observed to reduce the extent of enzyme destabilization which occurred during pretreatments at warm temperatures. Vasoactive intestinal polypeptide and phorbol myristate acetate, which stimulate prolactin secretion in intact GH3 cells, enhanced enzyme activity 4- and 2.5-fold, respectively, without added Ca2+. Increasing free Ca2+ concentrations reduced the enhancement by VIP and eliminated the stimulation by PMA.  相似文献   

16.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

17.
Brain nicotinic receptors display pronounced permeability for Ca2+ and localize to presynaptic nerve terminals, in addition to postsynaptic sites. Chronic exposure to nicotine has been shown to alter brain nicotinic receptor expression, but the functional consequences for presynaptic Ca2+ have not been directly examined. Here, we used confocal imaging to assess Ca2+ responses in individual nerve terminals from cortices of mice treated up to 14 days with nicotine as compared to vehicle-treated controls. Chronic nicotine treatment led to substantially enhanced amplitudes of presynaptic Ca2+ responses to acute application of nicotine at concentrations of 50 nM (2-fold) and 500 nM (1.7-fold), but not 50 μM. In addition, increased expression of high-affinity nicotinic receptors on isolated terminals was observed following chronic treatment, as determined immunocytochemically and pharmacologically. These findings suggest that chronic exposure to nicotine may lead to enhanced sensitivity to nicotine at select presynaptic sites in brain via up-regulation of high-affinity nicotinic receptors.  相似文献   

18.
The catalytic activity of guanylate cyclase (GCase) coupled to atrial natriuretic peptide (ANP) receptor depends on the metal co-factor, Mn2+ or Mg2+. ATP synergistically stimulates the ANP-stimulated GCase in the presence of Mg2+. We have now shown the ATP regulation of the ANP-stimulated GCase in the presence of Mn2+ in rat lung membranes. ANP stimulated the GCase 2.1-fold compared to the control. ATP enhanced both the basal (basal-GCase) and the ANP-stimulated GCase maximally 1.7- and 2.3- fold compared to the control, respectively, at a concentration of 0.1 mM. The stimulation by ATP was smaller in the presence of Mn2+ than in the presence of Mg2+. The addition of inorganic phosphate to the reaction mixture altered the GCase activities in the presence of Mn2+ with or without ANP and/or ATP. In the presence of 10 mM phosphate, ATP dose-dependently stimulated the basal GCase 5-fold compared to the control at a concentration of 1 mM and augmented the ANP-stimulated GCase, which was 4.2-fold compared to the basal-GCase, 5.5-fold compared to the control at a concentration of 0.5 mM. Protein phosphatase inhibitors, okadaic acid (100 nM), H8 (1 M) and staurosporin (1 M), did not alter the activity. Orthovanadate (1 mM), an inorganic phosphate analogue, significantly stimulated both the basal-GCase and the ANP-stimulated GCase, which were inhibited by ATP. It was assumed that phosphate and orthovanadate might interact with the GCase to regulate the activity in the opposite manner. This was the first report that inorganic phosphate and orthovanadate affected the ATP-regulation of the ANP-stimulated GCase in the presence of Mn2+.  相似文献   

19.
Solid-phase extraction (SPE) method was developed for the preconcentration of Cu2+ and Ni2+ before their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Bacillus subtilis–immobilized Amberlite XAD-16 was used as biosorbent. Effects of critical parameters such as pH, flow rate of samples, amount of Amberlite XAD-16 and biosorbent, sample volume, eluent type, and volume and concentration of eluent on column preconcentration of Cu2+ and Ni2+ were optimized. Applicability of the method was validated through the analysis of the certified reference tea sample (NCS ZC73014). Sensitivity of ICP-OES was improved by 36.4-fold for Cu2+ and 38.0-fold for Ni2+ by SPE-ICP-OES method. Limit of quantitation (LOQ) was found to be 0.7 and 1.1 ng/ml for Cu2+ and Ni2+, respectively. Concentrations of Cu2+ and Ni2+ were determined by ICP-OES after application of developed method. Relative standard deviations (RSDs) were lower than 4.9% for Cu2+ and 7.9% for Ni2+. The Tigris River that irrigates a large agricultural part of Southeast Turkey is polluted by domestic and industrial wastes. Concentrations of Cu2+ and Ni2+ were determined in water, soil, and some edible vegetables as a biomonitor for heavy metal pollution.  相似文献   

20.
Jia Y  Zhong JJ 《Bioresource technology》2011,102(21):10147-10150
The effect of divalent metal ions (i.e., Mn2+, Mg2+, Zn2+, Cu2+, and Co2+) on the production of anticancer ansamitocin P-3 (AP-3) by submerged cultures of Actinosynnemapretiosum in medium containing agro-industrial residues was investigated, and Mg2+ was found to be the most effective. Under the optimal condition of Mg2+ addition, the maximal AP-3 production titer reached 85 mg/L, which was 3.0-fold that of the control. The activities of methylmalonyl-CoA carboxyltransferase (MCT) and methylmalonyl-CoA mutase (MCM) were enhanced. The content of two precursors, malonyl-CoA and methylmalonyl-CoA, was lower than that of control. This work demonstrates that Mg2+ addition is a simple and effective strategy for increasing AP-3 production through the regulation of enzyme activity and pools of precursors. The information obtained can be helpful to its efficient production on large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号