首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6′-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8′-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10′-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1–6 and led to the synthesis of an additional product, which was identified as 5-(8′Z,11′Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.  相似文献   

2.
3.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

4.

Objective

The 9_2 carbohydrate-binding module (C2) locates natively at the C-terminus of the GH10 thermophilic xylanase from Thermotoga marimita. When fused to the C-terminus, C2 improved thermostability of a GH11 xylanase (Xyn) from Aspergillus niger. However, a question is whether the C-terminal C2 would have a thermostabilizing effect when fused to the N-terminus of a catalytic module.

Results

A chimeric enzyme, C2-Xyn, was created by step-extension PCR, cloned in pET21a(+), and expressed in E. coli BL21(DE3). The C2-Xyn exhibited a 2 °C higher optimal temperature, a 2.8-fold longer thermostability, and a 4.5-fold higher catalytic efficiency on beechwood xylan than the Xyn. The C2-Xyn exhibited a similar affinity for binding to beechwood xylan and a higher affinity for oat-spelt xylan than Xyn.

Conclusion

C2 is a thermostabilizing carbohydrate-binding module and provides a model of fusion at an enzymatic terminus inconsistent with the modular natural terminal location.
  相似文献   

5.
Gene yddG of Escherichia coli encodes a protein of the inner membrane. Data obtained earlier demonstrated that under conditions of aromatic amino acids overproduction YddG promotes their export from E. coli cells. In this work, a method of primer extension was used to localize the P yddG promoter, which corresponds to E. coli promoters recognized by RNA polymerase in complex with σ70 or σS subunits. By constructing a gene of the hybrid protein YddG’-LacZ at the intrinsic site of gene yddG location in the E. coli chromosome and analyzing the activity of β-galactosidase in cells growing on laboratory media LB and M9, the constitutive type of yddG expression at a low level was demonstrated (the activity was about 3 to 4% of the LacZ level under induction of the lac operon in E. coli wild-type cells). The expression of yddG had a twofold increase under conditions of retarded cell growth upon the stress caused by the high NaCl content (0.6 M) or by the presence of phenylalanine excess quantities (>1 mM) in the culture medium.  相似文献   

6.
WE have shown that induction of the enzyme L-arabinose isomerase in Salmonella typhimurium ceases following infection with the bacteriophage P22 leading to lysis, whereas with infection leading to lysogeny there is a temporary inhibition of induction after which the synthesis of the enzyme begins again1. After infection, there is a transient depression of the overall rate of RNA and protein synthesis1. This phenomenon is similar to that observed in T-even phage and λ-infected E. coli2–5. Arguments for and against the involvement of phage genes2–12 in such phenomena have been put forward. We now present evidence to suggest that the sie gene of phage P22 is involved in the inhibition of host macromolecular synthesis.  相似文献   

7.
The lipopolysaccharide (LPS) of Escherichia coli 126 was isolated and studied. The lipid A fatty acid composition of the investigated LPS was similar to that of other members of the family Enterobacteriaceae. The E. coli 126 LPS was more toxic than the LPSs of previously studied E. coli strains and of other members of the Enterobacteriaceae (Budvicia aquatica and Pragia fontium), and was less pyrogenic than pyrogenal. SDS-PAG electrophoresis showed a bimodal distribution typical of S-form LPSs. The LPS of E. coli 126 decreased the adhesive index indicating a possible competition between LPS molecules of E. coli 126 and adhesins of E. coli F-50 on rabbit erythrocytes. The LPS of E. coli 126 in a homologous system showed antigenic activity in the reactions of double immunodiffusion in agar by Ouchterlony. No serological cross-reaction of the LPS of other E. coli strains, as well as of that of the B. aquatica type strain, with the antiserum to E. coli 126 was observed. The structural components of the lipopolysaccharide obtained by mild acid hydrolysis were lipid A, the core oligosaccharide, and the O-specific polysaccharide. Based on the data of monosaccharide analysis and 1H and 13C NMR spectroscopy it was found that the O-specific polysaccharide had the structure characteristic of the representatives of E. coli serogroup O15.  相似文献   

8.
The operon for the Bacillus stearothermophilus SE-589 nickase-modification system (NM.BstSEI, recognition site 5′-GAGTC-3′) includes two DNA methyltransferase (M.) genes, bstSEIM1 and bstSEIM2. The gene encoding M2.BstSEI was cloned in pJW and expressed in Escherichia coli cells. M2.BstSEI was purified by chromatography and displayed maximal activity at 55° C and pH 7.5. The enzyme modified adenine in the nickase recognition site 5′-GAGTC-3′ and was specific for 5′-GASTC-3′ substrates. The kinetic parameters of the methylation reaction were determined. The catalytic constant was 2.2 min?1, and the Michaelis constant was 9.8 nM on T7 DNA and 5.8 μM on SAM.  相似文献   

9.

Objective

We attempted to overexpress Human Histone Deacetylase 1 (HDAC1) in Escherichia coli.

Results

A synthetic gene coding for HDAC1, and optimised for E. coli codon usage, was cloned into pBADHisB, generating pBAD-rHDAC1. This construct was used to transform E. coli TOP10, and the target protein was overexpressed and partially purified. According to its elution volume from a Superdex 200 column, the partially purified rHDAC1 was obtained in aggregated form, i.e., as an octamer. The dissociation of octameric HDAC1 was tested using several agents, among which sodium dodecyl sulfate was competent in partially dissociating rHDAC1 aggregates. When the enzyme activity was tested in vitro using 3H-acetyl-labelled histones both protein samples, aggregated and dissociated, were active. Hence, our results suggest that E. coli represents an alternative system for the production of the recombinant HDAC1.

Conclusions

We described a procedure for the overexpression in E. coli of recombinant HDAC1, the purification of which in active form can be successfully performed, although yielding an octameric aggregate.
  相似文献   

10.

Objectives

To engineer Escherichia coli for the heterologous production of di-rhamnolipids, which are important biosurfactants but mainly produced by opportunistic pathogen Pseudomonas aeruginosa.

Results

The codon-optimized rhlAB and rhlC genes originating from P. aeruginosa and Burkholderia pseudomallei were combinatorially expressed in E. coli to produce di-rhamnolipids with varied congeners compositions. Genes involved in endogenous upstream pathways (rhamnose and fatty acids synthesis) were co-overexpressed with rhlABrhlC, resulting in variations of rhamnolipids production and congeners compositions. Under the shake-flask condition, co-overexpression of rfbD with rhlABrhlC increased rhamnolipids production (0.64 ± 0.02 g l?1) than that in strain only expressing rhlABrhlC (0.446 ± 0.009 g l?1), which was mainly composed of di-rhamnolipids congeners Rha–Rha–C10–C10.

Conclusion

Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically engineered E. coli strains were achieved via combiniations of mono-/di-rhamnolipids synthesis modules and endogenous upstream modules.
  相似文献   

11.
The effect of reactive oxygen and nitrogen species on lux-biosensors based on the Escherichia coli K12 MG1655 and Salmonella typhimurium LT2 host strains was investigated. The bioactivity of exogenous free radicals to the constitutively luminescent E. coli strain with plasmid pXen7 decreased in the order H2O2 > OCl > NO? > RОO? > ONOO> O2?- while the bioluminescence of S. typhimurium strain transformed with this plasmid decreased in the order NO? > H2O2 > ONOO > RОO? > OCl > O2?- The cross-reactivity of induced lux-biosensors to reactive oxygen and nitrogen species, the threshold sensitivity and the luminescence amplitude dependences from the plasmid specificity and the host strain were indicated. The biosensors with plasmid pSoxS′::lux possessed a wider range of sensitivity, including H2O2 and OCl, along with O2?- and NO?. Among the used reactive oxygen and nitrogen species, H2O2 showed the highest induction activity concerning to the plasmids pKatG′::lux, pSoxS′::lux and pRecA′::lux. The inducible lux-biosensors based on S. typhimurium host strain possessed a higher sensitivity to the reactive oxygen and nitrogen species in comparison with the E. coli lux-biosensors.  相似文献   

12.
Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPSaer and the AgNPs-EPSanaer, were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPSaer, in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPSaer. In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPSaer exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPSaer. The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag+ release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations.  相似文献   

13.
Limited information is available on α-amino-ε-caprolactam (ACL) racemase (ACLR), a pyridoxal 5′-phosphate-dependent enzyme that acts on ACL and α-amino acid amides. In the present study, eight bacterial strains with the ability to racemize α-amino-ε-caprolactam were isolated and one of them was identified as Ensifer sp. strain 23-3. The gene for ACLR from Ensifer sp. 23-3 was cloned and expressed in Escherichia coli. The recombinant ACLR was then purified to homogeneity from the E. coli transformant harboring the ACLR gene from Ensifer sp. 23-3, and its properties were characterized. This enzyme acted not only on ACL but also on α-amino-δ-valerolactam, α-amino-ω-octalactam, α-aminobutyric acid amide, and alanine amide.  相似文献   

14.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet r ) and lincomycin (lin r ) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative p19cat plasmid producing a hybrid plasmid. Insertion frequency was 10?4?10?5. Then genes tet r and lin r were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F′ and R′ plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

15.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

16.
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L?1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL?1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg?1 min?1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.  相似文献   

17.
Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL?1, an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L?1.  相似文献   

18.
Escherichia coliL-asparaginase, an antileukaemic agent in man1, inhibits in vitro mitogen or antigen-induced blastogenesis in man2,3 and in animals (M. Bennett, E. G. Mayhew and T. Han, unpublished data) and suppresses bone-marrow derived antibody precursor cells in the mouse4. We now report that another L-asparaginase preparation—from Erwinia carotovora—also possesses antileukaemic activity5,6 and has a more pronounced immunosuppressive effect on in vitro blastogenesis than the E. coli enzyme.  相似文献   

19.

Background

Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production.

Results

The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l?1 h?1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l?1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l?1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals.

Conclusion

A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol.
  相似文献   

20.
Escherichia coli strains from swine origin, either susceptible or resistant to colistin, were grown under planktonic and biofilm cultures. After which, they were treated with antibacterial agents including nisin and enterocin DD14 bacteriocins, colistin and their combinations. Importantly, the combination of colistin, enterocin DD14 and nisin eradicated the planktonic and biofilm cultures of E. coli CIP54127 and the E. coli strains with colistin-resistance phenotype such as E. coli 184 (mcr-1 +) and E. coli 289 (mcr-1 ?), suggesting therefore that bacteriocins from lactic acid bacteria could be used as agents with antibiotic augmentation capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号