共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert Schlegel M. Olivia Harris Glenn S. Belinsky 《Journal of cellular biochemistry》1995,57(2):351-361
Changes in protein tyrosine phosphorylation are known to be important for regulating cell cycle progression. With the aim of identifying new proteins involved in the regulation of mitosis, we used an antibody against phosphotyrosine to analyze proteins from synchronized human and hamster cells. At least seven proteins were found that displayed mitosis-specific tyrosine phosphorylation in HeLa cells (pp165, 205, 240, 250, 270, 290, and ~ 400) and one such protein in hamster BHK cells (pp155). In synchronized HeLa and BHK cells, all proteins except HeLa pp165, pp205, and pp250 were readily detectable only in mitosis. Tyrosine phosphorylation of pp165, pp205, and pp250 was apparent during arrest in S phase, suggesting that cell cycle perturbations can affect the phosphorylation state of some of these proteins. In a related finding in BHK cells, pp155 underwent tyrosine phosphorylation when cells were forced into premature mitosis by caffeine treatment. Only one protein (pp135 in HeLa cells) was found to be dephosphorylated on tyrosine during mitosis. The above findings may prove helpful for isolating new cell cycle proteins that are important for both the normal regulation of mitosis and the mitotic aberrations associated with cell cycle perturbations and chemical treatments. 相似文献
2.
Cloning of the peacdc2 homologue by efficient immunological screening of PCR products 总被引:6,自引:0,他引:6
A homologue of the ubiquitous eukaryotic cell cycle regulatory gene,cdc2, has been cloned fromPisum sativum, the garden pea. A novel immunological strategy was devised and implemented for screening PCR products generated by degenerate oligonucleotide primers. We used PCR to construct a deletion derivative of anEscherichia coli expression plasmid carrying theSchizosaccharomyces pombe cdc2 gene. The deleted segment encoded the domain recognized by monoclonal antibody MAb-J4, a reagent which also detects a single protein in extracts of all plant species we have examined. PCR products, generated by appropriatecdc2 primers, were ligated into new restriction sites flanking the deletion, reconstituting the deleted epitope. This strategy, first validated on a cloned yeastcdc2 template as control, was applied to the highly efficient cloning of a cDNA segment comprising 60% of the peacdc2 homologue. DNA sequencing revealed strong amino acid sequence conservation among thecdc2 gene products from pea, yeast and animal cells. Genomic Southern analysis indicated that thecdc2 gene occurs as a single copy in pea. An additionalcdc2-like clone was recovered which displays amino acid sequence similarity with that of peacdc2. The reported cloning and screening strategy, though limited by the availability of appropriate immunological reagents, provides not only an efficient means of screening heterogeneous PCR products generated by degenerate probes and/or low stringency PCR, but also product verification by immunological criteria. 相似文献
3.
[目的] 探究不同温度下酿酒酵母细胞分裂周期蛋白Cdc5蛋白在有丝分裂中的分子动力学变化。[方法] 本研究以酿酒酵母(Saccharomyces cerevisiae)为材料,采用活细胞成像的方法,探究Cdc5蛋白在不同温度下在酿酒酵母有丝分裂过程中的精细分子动力学变化;通过测量OD595绘制生长曲线图,看其宏观的分裂情况是否与微观下Cdc5蛋白的分子动力学变化一致;利用流式细胞术检测细胞的细胞周期变化的情况。[结果] 在胞质分裂时,Cdc5蛋白从母细胞进入子细胞,并在芽颈处发生聚集。25℃条件下细胞中Cdc5蛋白在芽颈处的聚集时间长,37℃条件下Cdc5蛋白在芽颈处聚集时间短,两者间存在显著差异;但两个温度下,细胞中Cdc5蛋白的表达量没有显著性差异。同时,温度也会影响Cdc5蛋白在降解过程中的动力学行为,包括Cdc5蛋白在母细胞与子细胞中荧光强度峰值出现的次数和时间。生长曲线结果显示,酿酒酵母单一细胞分裂周期的变化影响了其宏观的细胞生长,且酵母分裂速度越快,子细胞长宽比越小;细胞周期结果表明,37℃下Cdc5蛋白的动力学变化与酿酒酵母细胞周期变化一致,酿酒酵母细胞周期从G0/G1期进入S期,亦加速了酿酒酵母的分裂。[结论] 本研究首次探究了不同温度下酿酒酵母有丝分裂中Cdc5蛋白的精细分子动力学及对应的酵母的宏观生长情况,结果表明温度会对Cdc5蛋白的动力学产生影响,且其精细分子动力学与酿酒酵母的分裂速度成正相关,该结果为进一步研究其在细胞有丝分裂中的功能提供了前期研究基础。 相似文献
4.
辅助伴侣分子Cdc37蛋白的研究进展 总被引:1,自引:0,他引:1
细胞分裂周期蛋白Cdc37最初是在芽殖酵母中发现的细胞周期相关蛋白。随后的研究表明Cdc37具有伴侣分子活性,可以特异地募集一系列的蛋白激酶结合到热激蛋白90(Hsp90)上,形成特定的分子伴侣复合体,参与维持蛋白的稳定性和激酶活性。Cdc37参与了细胞内的多项生命活动,在细胞周期、信号转导和基因表达中都起着重要的作用。由于Cdc37在肿瘤组织中特异性地高表达,使其成为肿瘤治疗中一个重要的分子靶点。 相似文献
5.
Anan Chen Tara K. Akhshi Brigitte D. Lavoie Andrew Wilde 《The Journal of biological chemistry》2015,290(21):13500-13509
The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin β2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin β2 binding does not regulate anillin''s function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin''s function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division. 相似文献
6.
7.
8.
Wei Tu Jin Gong Jun Song Dean Tian Zhijun Wang 《Journal of cellular and molecular medicine》2021,25(11):5220-5237
9.
Asano T Yoshioka Y Kurei S Sakamoto W Machida Y;Sodmergen 《The Plant journal : for cell and molecular biology》2004,38(3):448-459
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed. 相似文献
10.
11.
Centrosomes are major microtubule organizing centers (MTOCs) that play an important role in chromosome segregation during cell division. Centrosomes provide a stable anchor for microtubules, constituting the centers of the spindle poles in mitotic cells, and determining the orientation of cell division. However, visualization of centrosomes is challenging because of their small size. Especially in mouse tissues, it has been extremely challenging to observe centrosomes belonging to a specific cell type of interest among multiple comingled cell types. To overcome this obstacle, we generated a tissue‐specific centrosome indicator. In this mouse line, a construct containing a floxed neomyocin resistance gene with a triplicate polyA sequence followed by an EGFP‐Centrin1 fusion cassette was knocked into the Rosa locus. Upon Cre‐mediated excision, EGFP‐Centrin1 was expressed under the control of the Rosa locus. Experiments utilizing mouse embryo fibroblasts (MEFs) demonstrated the feasibility of real‐time imaging, and showed that EGFP‐Centrin1 expression mirrored the endogenous centrosome cycle, undergoing precisely one round of duplication through the cell cycle. Moreover, experiments using embryo and adult mouse tissues demonstrated that EGFP‐Centrin1 specifically mirrors the localization of endogenous centrosomes. genesis 54:286–296, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc. 相似文献
12.
13.
Saran S 《Cell biology international》1999,23(6):399-405
Levels of intracellular calcium, (Ca(2+))(i), from different stages of cell cycle of Dictyostelium discoideum were monitored using the fluorescent Ca(2+)-sensitive dye, Indo 1. Combinations of Ca(2+)-ionophore (A23187) and Ca(2+)-chelator (EGTA) resulted in the inhibition of progression of cell cycle. This delay was caused due to block in G(2)/M-->S phase transition of the cell cycle. Rescue of the cell cycle progression was made with 0.5 m m of exogenous Ca(2+). High (Ca(2+))(i)levels overlapped with the S-phase, of the cell cycle.Results indicate that a high (Ca(2+))(i)level during S-phase is not required for cell cycle progression but for cell-type choice mechanism at the onset of starvation, and these cells tend to follow the prestalk pathway. 相似文献
14.
15.
Steven E. Clark 《Seminars in cell & developmental biology》1996,7(6):873-880
In higher plants, organ formation occurs throughout life. This remarkable process occurs at a collection of stem cells termed the shoot meristem. The shoot meristem originates during embryogenesis and is later responsible for generating the above-ground portion of the plant. The shoot meristem can be thought of as having two zones, a central zone containing meristematic cells in an undifferentiated state, and a surrounding peripheral zone where cells enter a specific developmental pathway toward a differentiated state. Recent advances have revealed several genes that specifically regulate meristem development inArabidopsis. The function of these genes and their genetic interactions are described. 相似文献
16.
Vladislav Ryvkin Mohammad Rashel Trivikram Gaddapara Soosan Ghazizadeh 《The Journal of biological chemistry》2015,290(17):11199-11208
PKD is a family of three serine/threonine kinases (PKD-1, -2, and -3) involved in the regulation of diverse biological processes including proliferation, migration, secretion, and cell survival. We have previously shown that despite expression of all three isoforms in mouse epidermis, PKD1 plays a unique and critical role in wound healing, phorbol ester-induced hyperplasia, and tumor development. In translating our findings to the human, we discovered that PKD1 is not expressed in human keratinocytes (KCs) and there is a divergence in the expression and function of other PKD isoforms. Contrary to mouse KCs, treatment of cultured human KCs with pharmacological inhibitors of PKDs resulted in growth arrest. We found that PKD2 and PKD3 are expressed differentially in proliferating and differentiating human KCs, with the former uniformly present in both compartments whereas the latter is predominantly expressed in the proliferating compartment. Knockdown of individual PKD isoforms in human KCs revealed contrasting growth regulatory roles for PKD2 and PKD3. Loss of PKD2 enhanced KC proliferative potential while loss of PKD3 resulted in a progressive proliferation defect, loss of clonogenicity and diminished tissue regenerative ability. This proliferation defect was correlated with up-regulation of CDK4/6 inhibitor p15INK4B and induction of a p53-independent G1 cell cycle arrest. Simultaneous silencing of PKD isoforms resulted in a more pronounced proliferation defect consistent with a predominant role for PKD3 in proliferating KCs. These data underline the importance and complexity of PKD signaling in human epidermis and suggest a central role for PKD3 signaling in maintaining human epidermal homeostasis. 相似文献
17.
Matsuhisa T 《Cell biology international》2001,25(2):185-188
Human promyelocytic leukaemic cells, HL-60, arrested in mitosis by nocodazole were released in the presence of 1alpha,25-dihydroxyvitamin D3 and thymidine or hydroxyurea. Cells moved from early G1 period to the G1/S boundary and differentiated. Furthermore, cells arrested at the G1/S boundary by double thymidine block were released, with 1alpha,25-dihydroxyvitamin D3 being added at the end of DNA synthesis. Under the latter conditions, differentiated cells developed, indicating that DNA synthesis is not required for cell differentiation. 相似文献
18.
Foong May Yeong 《BioEssays : news and reviews in molecular, cellular and developmental biology》2013,35(5):462-471
The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non‐dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down‐regulated during mitosis. Moreover, the RER and Golgi apparatus exhibit gross reorganization in mitosis. Here I provide a relatively neglected perspective of how the mitotic cyclin‐dependent kinase (CDK1) could regulate various stages of the secretory pathway. I highlight several aspects of the mitotic control of protein trafficking that remain unresolved and suggest that further studies on how the mitotic CDK1 influences the secretory pathway are necessary to obtain a deeper understanding of protein transport. 相似文献
19.
Marquès-Bueno MM Moreno-Romero J Abas L De Michele R Martínez MC 《The Plant journal : for cell and molecular biology》2011,67(1):169-180
Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport. 相似文献
20.
《Current biology : CB》2019,29(20):3439-3456.e5
- Download : Download high-res image (162KB)
- Download : Download full-size image