首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Impact of human influences on the vegetation of the Western Himalaya   总被引:1,自引:0,他引:1  
R. K. Gupta 《Plant Ecology》1978,37(2):111-118
Summary Effects of human influences on the vegetation of the Western Himalaya have been reviewed. Impacts of forest management practices, over-grazing, surface mining, defence and development operations, and road building activities, are severe in the region. This has created an alarming situation for soil and water conservation. Increased soil loss and runoff pose a threat to various reservoirs built for various uses and have increased hazards of erosion and floods in the Indus and Ganga basin regions.Nomenclature follows Hooker (1872–1897) and Gupta (1968).  相似文献   

2.
Forest vegetation of the Colorado Front Range   总被引:5,自引:0,他引:5  
The forest vegetation of the northern Colorado Front Range was studied using a combination of gradient analysis and classification methods. A graphical model of forest composition based on elevation and topographic-moisture gradients was constructed using 305 0.1 ha samples. To derive the topographic moisture gradient, stands were stratified into eight 200 m elevation belts, and then ordinated by correspondence analysis using understory (<1 m) data. Each of the resultant gradients was scaled against a standard site moisture scalar derived from incident solar radiation and topographic position. Except for krummholz sites, the vegetation defined gradients fit the moisture scalar closely. Once scaled, these gradients were stacked vertically, sandwich-style, to create the graphical representation shown in Figure 5.Gradient analysis and ordination (direct and indirect gradient analysis of Whittaker, 1967) are frequently viewed as alternative approaches for analysis of vegetation. With gradient analysis the axes are readily interpretable, but stand placement is often difficult and at times questionable. Ordination defines an optimal arrangement for species and/or stands, but axis interpretation is often impossible. With the present combination of methods, the interpretability of gradient analysis complements the precision of placement obtained with ordination.Forest vegetation was classified by dividing the gradient model into eight series and 29 types on the basis of similar successional trends in canopy dominants. On dry, low-elevation sites above 1 700 m Pinus ponderosa woodlands dominate. With increasing elevation or site moisture, tree density increases and Pinus ponderosa, Pseudotsuga forests prevail. At middle elevations on mesic sites forests of mixed composition occur. Pinus contorta forests dominate at middle elevations over much of the central position of the moisture gradient, though these are primarily post-fire forests. With protection from fire only a small percentage of sites retain dominance by Pinus contorta. Over the lower portion of its range Pinus contorta is succeeded by Pseudotsuga, while at higher elevations Abies lasiocarpa and Picea engelmannii can eventually achieve dominance. At high elevations on all except the driest sites Picea engelmannii and Abies lasiocarpa are exclusive dominants, both after disturbance and in climax forests. Pinus flexilis dominates on the driest high-elevation sites. Above 3 500 m forests are replaced by alpine tundra, often with a transitional krummholz zone.Structure and post-fire development were examined in the context of the gradient-based classification scheme. Three generalized types of forest development were recognized as reference points in a continuum of developmental patterns varying with both elevation and soil moisture.On favorable, middle-elevation sites, trees become established rapidly after disturbance. Rapid growth results in severe overcrowding and competitive elimination of reproduction. As a consequence bell-shaped diameter distributions develop. Diversity and productivity appear to drop while biomass remains roughly constant. Following decades or even centuries of stagnation, the forests eventually breakup through mortality of the canopy trees, thereby allowing regeneration to resume. During this period of renewed regeneration, biomass, diversity, and productivity all show dramatic changes in response to the changing population structure (Fig. 9). This type of forest development can be found in forests dominated by Picea engelmannii and Abies lasiocarpa, Pinus contorta, Pseudotsuga menzeisii, Pinus flexilis or Populus tremuloides. On highest elevation forest sites or at middle elevations on the very driest sites reestablishment rates are greatly reduced. These forests dominated by Picea and Abies or Pinus flexilis gradually approach predisturbance levels of biomass, diversity and productivity, while regeneration remains at a roughly constant level. At lower elevations in the Pinus ponderosa woodlands, regeneration appears episodic, reflecting variation in seed rain and favorable conditions for seedling growth. Here, inter-tree competition is relatively unimportant and diameter distributions show irregular humps resulting from periodic recruitment.A few species pairs presented consistent problems and their treatment as single species was necessary. Garex rossii and C. brevipes were lumped as Carex rossii. Rosa woodsii and R. acicularis were lumped as Rosa sp. Cirsium scopulorum and C. coloradense were lumped as Cirsium coloradense. Extreme forms of Arnica cordifolia and A. latifolia are easily distinguishable, but as these species intergrade and hybridize extensively, they have been lumped as Arnica cordifolia. The native bluegrass, Poa agassizensis, was lumped with Poa paratensis. Solidago missouriensis includes some S. canadensis.Nomenclature follows Weber (1972) for most species. In some cases where Weber's narrow generic concept deviates from the main thrust of present-day North American systematic botany, names were changed to conform with Harrington (1954) and Hitchcock & Cronquist (1973). Voucher specimens have been deposited in the herbarium of Rocky Mountain National Park, with a few unusual species being deposited in the herbarium of the University of Colorado, Boulder.Numerous individuals have contributed generously to this project. Among those to whom I am particularly indebted are B. Chabot, R. T. Clausen, C. V. Cogbill, J. Douglas, H. G. Gauch. Jr., D. C. Glenn-Lewin, D. Hamilton, K. H. Hildebrandt, D. Mueller-Dombois, R. L. Peet, D. Stevens, E. L. Stone, J. Vleck, W. A. Weber, T. R. Wentworth, and P. L. Whittaker. I especially thank R. H. Whittaker for advice and encouragement. Financial support was provided by grants from the National Science Foundation, the DuPont Foundation, Cornell University and the University of North Carolina Research Council. The cooperation and support of the National Park Service is gratefully acknowledged.  相似文献   

3.
Spectra on life form, leaf size, leaf persistence, flowering season, and shade tolerance of trees in different vegetation types occurring within the north-western catchment of the river Gola in Kumaun Himalaya are presented. The flora of Quercus leucotrichophora, Quercus lanuginosa and Quercus floribunda forests is phanerophytic, that of Pinus roxburghii and mixed forests therophytic. The grassland vegetation is characterized by the largest percentage of hemicryptophytes. The flora of the whole area, is therophytic. The biological spectrum for the entire Kumaun Himalaya is characterized as therohemigeophytic. Among the various altitudinal zones, the tropical has a preponderance of phanerophytes, the temperate and the alpine of hemicryptophytes.The observations on leaf size indicate that with the exception of Pinus roxburghii forest, in all vegetation types, the species with microphylls are greater in number. In this region, the vegetation expression is evergreen, although the tree flora has a considerable content of deciduous elements. In all the forests, the flowering period in most of the trees is vernal.On the basis of relative density, the greatest proportions of adult trees in the Pinus roxburghii and Quercus lanuginosa forests are shade intolerant, while in the mixed and Quercus leucotrichophora forests maximum trees are intermediate in shade tolerance. With the exception of the Pinus roxburghii forest, all the forests exhibit the dominance of trees which are shade tolerant at the seedling stage. On the basis of relative density, all forest types, except for Pinus roxburghii forest, have 74.5 to 100% trees with the potentiality of vegetative reproduction.Financial support from the Indian Space Research Organisation, Banglore and University Grants Commission, New Delhi is gratefully acknowledged.  相似文献   

4.
 A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species. Received: 26 July 1995 / Revised: 1 March 1996 / Accepted: 9 September 1996  相似文献   

5.
Atmospheric inputs of elements/ions into the soil through bulk precipitation and throughfall (precipitation below tree canopies) were monitored monthly at two forested catchments (Lesni Potok and Liz) in central and southwestern Bohemia, respectively. The annual deposition fluxes (expressed in μg/mg m?2 yr?1) of Al, As, Ba, Be, Ca, Cd, Cl?, F?, Fe, K, Mg, Mn, Ntot, Na, Ni, Pb, Rb, SO 4 2? , Sr and Zn between 1997 and 2005 were calculated from their concentrations in monthly collected samples of both precipitation types. The flux of H+ was calculated from the monthly pH values as well. The more pristine character of the Liz catchment was manifested in lower inputs of anions of strong inorganic acids (mostly of anthropogenic origin) and of H+ in spite of higher precipitation amounts at the site. The comparison of fluxes in bulk precipitation (BP) and throughfall (TH) has shown significantly higher values for Rb, K, Mg, Mn, F?, Ca, SO 4 2? , Sr, Ba and Cl? in the latter flux. It is declared that high fluxes of these elements/ions in TH significantly affect the forest soil water chemistry and that the forest vegetation significantly contributes to the mobilization of several elements in soil and to their redistribution throughout the soil profile.  相似文献   

6.
Phosphorus, an essential element for life, is continuously depleting from soils and thus demands sustainable management particularly in agriculture and forestry. Inorganic P constitutes the major proportion as tricalcium phosphate in soils of lower Himalayan region of Pakistan. We sampled these soils and screened for P-solubilizing microbes. A range of culturable microbial community (bacteria and fungi) was isolated and molecularly characterized which make the P available from mineral phosphates. There was an increase in abundance of phosphate solubilizing bacteria (PSB) at a 6-inch depth of the pine rhizosphere compared to the surface soil samples. Moreover, the isolates from lower Himalaya have higher abundance and better efficiency to solubilize the inorganic P than the ones from non-Himalaya. Most likely the P-solubilization done by our P-solubilizing microbes is via acidification as we observed the decrease in pH of the medium of microbial growth. Furthermore, the majority of isolated PSB belong to gammaproteobacterial class of Gram negative bacteria. Most interestingly, 13% of our isolated PSB were psychrotolerant (physiologically active at cold environment, i.e., 4°C) and able to solubilize inorganic P as efficiently as at ambient temperature. This study is unique in reporting the P-solubilizing microbes, particularly the psychrotolerant bacterial strains, of Lower Himalaya. Therefore the isolated bacterial and fungal strains have potential and may serve as biofertilizers in the region to increase the P availability in soils.  相似文献   

7.
《农业工程》2022,42(4):407-416
Among the many global drivers of ecosystem degradation, the long-term impact of livestock settlements on vegetation patterns and composition, and is one of the greatest hurdles to successful forest ecosystem restoration. In order to identify the ecological implications of human land use changes on vegetation patterns and composition, the current study was conducted for the first time in Fir Forests of Kashmir Himalaya, to illustrate how vegetation responds to livestock settlements. We took samples from forest types both near and far from livestock settlements (ALS and NLS, respectively). To collect data on forest types, we employed a systematic random sampling strategy. After evaluation of the important value index (henceforth IVI) for each plant species along with anthropogenic data of forests, we analyzed data using ordination and cluster analysis techniques. On comparative analysis, the lesser values for diversity indices have been found for at the forest types near livestock settlement. It was discovered that 36% species were unique to away from livestock settlements forest type and 18% species in near to livestock settlements forest type, but that maximum 46% of species were common to all forest types studied. Species composition was unevenly distributed along with various anthropogenic factors, according to the canonical correspondence analysis. Forests near livestock settlements were also discovered to affect species abundance and diversity by promoting the growth of weedy species. The abundant growth of weedy flora such as Cirsium falconeri, Polygonum aviculare, and Urtica dioica around livestock settlement, results in alterations of plant community composition. The findings revealed that cut trees contributed 16% of reported density at ALS forest type and considerably higher values 35% at NLS forest type, respectively. Findings of the study could be used to develop effective livelihood options and management policies for long-term forest harvest impacts in the Himalayas, resulting in the sustainable use of local forest reserves.  相似文献   

8.
Summary Plant species diversity patterns of the Rocky Mountain forests were found to be at variance with patterns reported from other regions. The most centrally located forests in terms of elevation, site moisture and successional status were found to have the lowest diversity. In contrast, the peripheral and environmentally more severe sites were found to have relatively high diversity. In particular, the forest-grassland transition and the low elevation riparian forests have species diversity values as high as any yet reported from western North America.When diversity was examined in terms of variation across elevation or moisture gradients, varying results were obtained due to the interaction of these factors. The failure of previous studies to converge on generalizations about plant diversity reflects, in part, the failure of most investigators to view diversity in a regional context of variation across several interacting gradients.Diversity was seen to vary inversely with the degree of development of the forest canopy. The interaction of different components of the forest community is one reason for the failure of general patterns of plant species diversity to emerge from previous studies. A potentially rich herb community can be greatly suppressed by a single species tree stratum.Among the most successful work to date on species diversity is that on birds, a distinct albeit large and functional group. It is unlikely that similar success could have been achieved through work on all animal species simultaneously. This suggests the need to examine plant species diversity, not in terms of total diversity, but in terms of component functional groups, perhaps guilds, growing under similar microclimatic conditions and subject to similar competitive pressures.Nomenclature follows Weber (1976).  相似文献   

9.
In this paper we consider one method of mapping larger units identified from the spatial pattern of sequences of vegetation types. The basic data were presence/absence data for 6450 stands arranged in 90 transects. A second set of data was derived by averaging the species occurrences in non-overlapping groups of 5 stands. A divisive numerical classification was used to determine the primary vegetation units. In all, 5 different sets of primary types were derived, using different species suites, different sample sizes and different numerical methods. We briefly discuss the types identified and their spatial patterns in the area.Each of these types was then used to define a string of type-codes for every transect so that each transect represents a sample from the landscape containing information on the frequency and spatial distribution of the primary vegetation types. The transects may be classified using a Levenshtein dissimilarity measure and agglomerative hierarchical classification, giving 5 analyses of transects, one for each of the primary types discussed above. We then examine these transect classifications to investigate the stability of the vegetation landspace patterns under changes in species used for the primary classification, in size of sample unit and in method of primary classifications. There is a considerable degree of stability in the results. However it seems with this vegetation that the tree species and non-tree species have considerable independence. We also indicate some problems with this approach and some possible extensions.  相似文献   

10.
To understand the relationships between soils and vegetation in forest ecosystems, it is necessary to establish the spatial levels where they are implemented and to determine parameters characterizing the relationships. The key step in the development of the hierarchy of the spatial levels is the establishment of the elementary unit of the soil-vegetation cover. Such a unit, called tessera, is substantiated. Studies conducted in boreal forests have demonstrated a close association between the vegetation and soil components of tesserae. It can be quantitatively described in terms of informative fertility parameters: pH; C: N ratio; contents of nutrients, such as Ca and Mn; etc. Thus, data on the relationships between soil and vegetation determined in tesserae can be summarized at higher spatial levels of the forest cover: parcel, biotope, etc.  相似文献   

11.
Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long‐term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient‐poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient‐rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLempN). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat‐specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.  相似文献   

12.
《农业工程》2022,42(6):609-615
Enormous biotic stresses, such as uncontrolled grazing, logging, use of plants for timber and fuelwood, deforestation for cultivation, and road constructions have drastically deteriorated forests in the Kashmir Himalaya. On the basis of the intensity of biotic stress, three differently forest sites, protected, unprotected and roadside forest, were studied. Random vegetation sampling was done to record herbaceous diversity in the Tangmarg Forest Division of Kashmir valley in 2019. Six diversity indices were negatively correlated with increasing levels of anthropogenic disturbance. The values further elucidated by the Rényi diversity profiles, indicated that the protected forest sites had significantly higher diversity as compared to the road side forest sites. Scaling based on an increased order of total number of species in the forest richness and diversity – on top were protected forest sites, followed by unprotected forest sites, while road side forest sites were on the lower end of this spectrum. The Principal component analysis (PCA) showed two distinct groups based on the composition and IVI of the plant species. The results of this study identify diverse biotic stresses and could help in framing the policies for forest management.  相似文献   

13.
Altitudinal forest and climate changes from warm, dry valley bottom (1250 m a.s.l.) to cool, humid ridge top (3550 m a.s.l.) along the typical dry valley slopes of the Bhutan Himalaya were studied. Annual mean temperature decreased upslope with a lapse rate of 0.62 °C·100 m−1 from 18.2 °C at the valley bottom to 4.3 °C at the ridge top. On the contrary volumetric soil moisture content increased from 14.7 to 75.0%. This inverse relationship is the major determinant factor for the distribution of different forest types along the altitudinal gradient. Based on the quantitative vegetation data from 15 plots arranged ca. 200 m in altitude interval (1520–3370 m a.s.l.), a total of 83 tree species belonging to 35 families were recorded. Three major formation types of lower and upper coniferous forests, and a mid-altitude evergreen and deciduous broad-leaved forest were contrasted. Including two transitional types, five forest zones were categorized based on cluster analysis, and each zone can be characterized by the dominants and their phytogeographical traits, viz. (1) west Himalayan warm, dry pine (1520–1760 m a.s.l.), (2) wide ranging east-west Himalayan mixed broad-leaved (1860–2540 m a.s.l.), (3) humid east Himalayan evergreen broad-leaved (2640–2820 m a.s.l.), (4) cool, humid east Himalayan conifer (2950–3210 m a.s.l.), and (5) wide ranging cold, humid conifer (3305–3370 m a.s.l.). Structurally, total basal area (biomass) increased from 15.2 m2 ha−1 in the pine forest (1520 m) to 101.7 m2 ha−1, in the conifer forest (3370 m a.s.l.). Similarly, soil organic carbon increased from 2.7 to 11.3% and nitrogen from 0.2 to 1.9% indicating dry, poor nutrient fragile ecosystem at the dry valley bottom. We concluded that low soil moisture content (<20%) limits downslope extension of broad-leaved species below 1650 m a.s.l. while coldest month’s mean temperature of −1 °C restricted the upslope extension of evergreen broad-leaved species above 3000 m a.s.l. Along the dry valley slopes, the transition from dry pine forest in the valley bottom, to a mixture of dry west Himalayan evergreen and deciduous east Himalayan broad-leaved, and to humid evergreen oak–laurel forests feature a unique pattern of forest type distribution.  相似文献   

14.
This paper elucidates nutrient dynamics in a pine forest, previouslyinvestigated for dry matter dynamics. The nutrient concentrationsin different life forms were of the order: herb > shrub >tree whereas the standing state of nutrients were of the order:tree > shrub > herb. Soil, litter and vegetation respectivelyaccounted for 38·1–82·2, 2·4–3·7and 15·4–58·2 per cent of the total nutrientsin the system. Considerable reductions (52–69 per cent)in concentrations of nutrient in needles occurred during senescence.The uptake of nutrients by vegetation, and also by differentcomponents with and without adjustment for internal recycling,has been calculated separately. Annual transfer of litter tothe soil by vegetation was 76·21 N, 6·25 P, 57·24Ca, 14·22 Mg, 19·92 K and 1·92 kg ha–1Na. Turnover rate and turnover time for different nutrientsranged between 0·40–0·64 and 1·56–2·50year, respectively. Compartment models for nutrient dynamicshave been developed to represent the distribution of nutrientcontents and net annual fluxes within the system. Nutrient concentration, standing state, uptake, internal recycling, nutrient return, turnover, nutrient cycling  相似文献   

15.
16.
我国东北天然林保护工程区森林植被的碳储量   总被引:1,自引:0,他引:1  
以东北天然林保护工程区森林生态系统为对象,通过对其主要森林类型进行调查,探讨天保工程经营区划对森林植被固碳现状的影响,并结合已有的东北林区生物量与蓄积量数据库,建立了东北林区主要树种组的生物量-蓄积量回归模型,然后以第7次森林资源清查为基础,对东北天保工程区森林植被碳储量进行估算,以期为全国森林生物量的估算和天保工程的评估提供参考。结果表明,不同经营区之间(重点公益林、一般公益林和商品林)森林植被碳密度的差异并不显著,这可能与天然林保护工程实施初期经营区划的标准、样地的选择以及天保工程实施过程中粗放的管理方式有关。东北天保工程区森林植被碳储量为1045 Tg C,占东北、内蒙古三省森林植被总碳储量的68%;工程区以天然林为主,占工程区总植被碳储量的97%。工程区森林植被平均碳密度为41 Mg/hm2,较东北、内蒙古三省平均植被碳密度高14%;工程区植被碳密度随林龄的增加逐渐增大,由幼龄林的13 Mg/hm2到过熟林的63 Mg/hm2。因此,继续加强天然林保护工程的实施,提高其林分质量,这对未来我国森林碳汇潜力的增加和森林的可持续发展都具有重要的意义。  相似文献   

17.
The present study deals with structure and function of fourareas of Himalayan chir pine forest. Tree layer was monospecificon all sites with varied density and basal cover in the rangeof 540–1630 individuals per ha and 25·0–47·2m2ha–1, respectively. Shrubs having low density were sparselydistributed. All allometric equations relating to biomass ofdifferent components, to circumference at breast height (cbh)were significant, with the exception of that for cone biomass.Total vegetation biomass (115–236 t ha–1) was distributedas 113–283 t ha–1 in trees. 0·56–0·82t ha–1 in shrubs and 1·63–2·57 t ha–1in herbs. Total forest floor biomass including herbaceous litterranged between 9·6 and 13·6 t ha–1. Of thetotal annual litter fall (4·26–7·38 t ha–1),60·3–75·1 per cent was distributed in leaflitter and 24·9–39·7 per cent in wood litter.Turnover rate of tree litter varied from 0·45 to 0·53,whereas rates for shrubs and herbs were assumed to 1. Net primaryproduction of total vegetation ranged between 9·91 and21·2 t ha–1 year–1, of which the contributionof trees, shrubs and herbs was 76·5– 88·1per cent 0·6–1·8 per cent and 11·3–21·5per cent, respectively. A compartment model of dry matter onthe basis of mean data across sites was developed to show drymatter storage and flow of dry matter within the ecosystem. Pinus roxburghii forest, biomass, litter fall, net primary production, compartmental transfer  相似文献   

18.
Globally, riparian zones along river banks are widely recognized for their vital role in water regulation and conservation of biodiversity. Here, we specifically investigated the floristic and functional diversity of the vegetation of the riparian zones of protected forests in Kashmir Himalaya, India. A random sampling method was used for site selection while a transect method was used for data collection. Data obtained from the field was subjected to taxonomic and functional classification. Floristic analysis revealed a total of 78 species belonging to 68 genera in 40 families, suggesting an unequal distribution of species among families. Nine families contributed half of the species: Rosaceae was the dominant family with nine (12%) species followed by Asteraceae with eight species (10%), while 23 families were monotypic. In terms of functional trait diversity, herbaceous and perennial taxa dominated, and the biological spectrum showed a dominance of the therophytic life form, indicative of disturbed vegetation. The phenological spectrum revealed that the maximum flowering periods starts in March and extends into May, in which a total of 61% of the species were observed to flower. The leading leaf size spectra were mesophyll with 35%, followed by microphyll (31%). Most (64%) of the species had a simple leaf lamina type. The results of the present study serve as a means to evaluate best management practices, assess restoration and mitigation projects, prioritize riparian related resource management decisions, and establish aquatic life use standards.  相似文献   

19.
天童国家森林公园植被碳储量估算   总被引:1,自引:0,他引:1  
郭纯子  吴洋洋  倪健   《生态学杂志》2014,25(11):3099-3109
以典型木荷-栲树群落、含苦槠的木荷-栲树群落、含杨梅叶蚊母树的木荷-栲树群落、披针叶茴香-南酸枣群落、枫香-马尾松群落、黄毛耳草-毛竹群落6种群落类型样地实测数据为基础,结合文献资料汇总,采用生物量相对生长方程法,研究了天童国家森林公园森林生态系统的植被碳储量、碳密度及其组分和空间分布特征.结果表明:野外调查的6种群落类型中,含苦槠的木荷-栲树群落碳储量(12113.92 Mg C)和碳密度(165.03 Mg C·hm-2)均最高,披针叶茴香 南酸枣群落碳储量最低(680.95 Mg C),其碳密度为101.26 Mg C·hm-2.各群落类型中,常绿树种的碳储量均显著高于落叶树种,其碳密度范围分别为76.08~144.95和0.16~20.62 Mg C·hm-2.各群落类型的乔木层各组分中,植株干的碳储量均最高.各林分类型中,常绿阔叶林碳储量最高,为23092.39 Mg C,占天童林区森林生态系统碳储量的81.7%,碳密度为126.17 Mg C·hm-2.天童国家森林公园植被总碳储量为28254.22 Mg C,碳密度为96.73 Mg C·hm-2.  相似文献   

20.
Aim The upland moorlands of Great Britain form distinctive landscapes of international conservation importance, comprising mosaics of heathland, acid grassland, blanket bog and bracken. Much of this landscape is managed by rotational burning to create gamebird habitat and there is concern over whether this is driving long‐term changes in upland vegetation communities. However, the inaccessibility and scale of uplands means that monitoring changes in vegetation and burning practices is difficult. We aim to overcome this problem by developing methods to classify aerial imagery into high‐resolution maps of dominant vegetation cover, including the distribution of burns on managed grouse moors. Location  Peak District National Park, England, UK. Methods Colour and infrared aerial photographs were classified into seven dominant land‐cover classes using the Random Forest ensemble machine learning algorithm. In addition, heather (Calluna vulgaris) was further differentiated into growth phases, including sites that were newly burnt. We then analysed the distributions of the vegetation classes and managed burning using detrended correspondence analysis. Results Classification accuracy was c. 95% and produced a 5‐m resolution map for 514 km2 of moorland. Cover classes were highly aggregated and strong nonlinear effects of elevation and slope and weaker effects of aspect and bedrock type were evident in structuring moorland vegetation communities. The classification revealed the spatial distribution of managed burning and suggested that relatively steep areas may be disproportionately burnt. Main conclusions Random Forest classification of aerial imagery is an efficient method for producing high‐resolution maps of upland vegetation. These may be used to monitor long‐term changes in vegetation and management burning and infer species–environment relationships and can therefore provide an important tool for effective conservation at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号