首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marama bean, Tylosema esculentum, is a tuberous legume native to the Kalahari region of Southern Africa where it grows under high temperatures (typical daily max 37 degrees C during growing season) and radiation (frequently in excess of 2000 micromol m(-2) s(-1)) in sandy soils with low rainfall. These conditions might be expected to select for increased water-use efficiency of photosynthesis. However, marama was found to give similar leaf photosynthetic rates to other C3 plants for a given internal leaf CO2 concentration and Rubisco content. Under conditions of increasing drought, no increase in water-use efficiency of photosynthesis was observed, but stomata closed early and preceded any change in leaf water potential. The possibility of subtle adaptations of photosynthetic characteristics to its natural environment were investigated at the level of Rubisco kinetics. The specificity factor of marama Rubisco was slightly lower than that of wheat, but the apparent Km for CO2 in air (Km') was about 20% lower than that of wheat. This is consistent with better adaptation for efficient photosynthesis at high temperatures in marama compared to wheat, although the net benefit is predicted to be very small (<0.5% at 35 degrees C). The sequence of marama rbcL gene shows 27 deduced amino acid residue differences from that for wheat, and the possibility that one or more of these cause the difference in Rubisco Km' is discussed.  相似文献   

2.
An isolation procedure utilizing ammonium sulfate fractionation and affinity chromatography was used to purify an elastase inhibitor present in large amounts in marama beans (Tylosema esculentum). The protein appeared to be heterogeneous due to carbohydrate differences, demonstrating two bands on SDS gels with molecular weights of 17.8?kDa and 20?kDa. Partial sequence, derived from mass spectrometry, indicated that the protein is a Kunitz-type inhibitor distinct from other known plant serine protease inhibitors. The marama bean inhibitor is specific for elastase, with very low Ki for both pancreatic and neutrophil elastase. The quantity of elastase inhibitor present in marama beans is many times greater than in soybean or any other bean or nut source reported to date. This raises the question of why a bean found in an arid corner of the Kalahari Desert would be so rich in a very potent elastase inhibitor.  相似文献   

3.
Marama bean (Tylosema esculentum) is an important component of the diet around the Kalahari Desert in Southern Africa where this drought resistant plant can grow. The marama bean contains roughly 1/3 proteins, 1/3 lipids and 1/3 carbohydrates, but despite its potential as dietary supplement little is known about the carbohydrate fraction. In this study the carbohydrate fraction of "immature" and "mature" marama seeds are characterised. The study shows that the marama bean contains negligible amounts of starch and soluble sugars, both far less than 1%. The cell wall is characterised by a high arabinose content and a high resistance to extraction as even a 6M NaOH extraction was insufficient to extract considerable amounts of the arabinose. The arabinose fraction was characterised by arabinan-like linkages and recognised by the arabinan antibody LM6 and LM13 indicating that it is pectic arabinan. Two pools of pectin could be detected; a regular CDTA (1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid) or enzymatically extractable pectin fraction and a recalcitrant pectin fraction containing the majority of the arabinans, of which about 40% was unextractable using 6M NaOH. Additionally, a high content of mannose was observed, possibly from mannosylated storage proteins.  相似文献   

4.
Certain legume crops, including white lupin (Lupinus albus L.), mobilise soil-bound phosphorus (P) through root exudates. The changes in the rhizosphere enhance P availability to these crops, and possibly to subsequent crops growing in the same soil. We conducted a pot experiment to compare phosphorus acquisition of three legume species with that of wheat, and to determine whether the legume crops influence growth and P uptake of a subsequent wheat crop. Field pea (Pisum sativum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and wheat (Triticum aestivum L.) were grown in three different soils to which we added no or 20 mg P kg–1 soil (P0, P20). Growth, P content and rhizosphere carboxylates varied significantly amongst crops, soils and P levels. Total P content of the plants was increased with applied phosphorus. Phosphorus content of faba bean was 3.9 and 8.8 mg/pot, at P0 and P20, respectively, which was about double that of all other species at the respective P levels. Field pea and white lupin had large amounts of rhizosphere carboxylates, whereas wheat and faba bean had negligible amounts in all three soils at both P levels. Wheat grew better after legumes than after wheat in all three soils. The effect of the previous plant species was greater when these previous species had received P fertiliser. All the legumes increased plant biomass of subsequent wheat significantly over the unplanted pots in all the soils. Faba bean was unparalleled in promoting subsequent wheat growth on all fertilised soils. This experiment clearly demonstrated a residual benefit of the legume crops on the growth of the subsequent wheat crop due to enhanced P uptake. Faba bean appeared to be a suitable P-mobilising legume crop plant for use in rotations with wheat.  相似文献   

5.
Vicia faba L. (faba bean) is an important legume and is cultivated essentially as a cool-season crop. Changes in sowing dates and lack of precipitation expose faba bean crop to drought and heat stresses. The gradual rise in global temperatures owing to climate change is likely to exacerbate the detrimental effects of hot and dry climatic conditions on faba bean cultivation. High temperature stress is particularly damaging to faba bean during the flowering period, when the viability of pollen is critical for successful reproduction. Recent studies have shown that maintenance of protein homeostasis through synthesis of heat shock proteins plays a key role in the heat response of plants. To date, there has been no significant work linking the heat response of faba bean to the repertoire of its heat shock proteins. While quantitative trait loci have been identified for resistance against biotic stresses in faba bean, there is no parallel success with abiotic stresses in this species. Programs aiming at genetic improvement of the heat/drought resistance of this crop by both conventional breeding and molecular breeding methods are hampered because of the large and majorly ill-analyzed genome of faba bean plants. Likewise, molecular and biotechnology-related tools are poorly developed for faba bean; as a result, the fruits of transgenic research developed with model plant species are not reaching this crop. While specifically discussing the prospects for the genetic improvement of faba bean against heat and drought stresses, we highlight the areas of research which need to be strengthened on faba bean.  相似文献   

6.
Marama bean (Tylosema esculentum, Fabaceae), a potential arid-land legume crop from the Kalahari Desert of Botswana, was analyzed for protein, amino acids, oil, fatty acids, fiber, caloric value, trypsin inhibitor, and mineral content. Results indicate that the bean is adequate in these nutrients for a human diet, but the trypsin inhibitor activity should be destroyed prior to consumption.  相似文献   

7.
8.
Common bean is an important and diverse crop legume with several wild relatives that are all part of the Phaseoleae tribe of tropical crop legumes. Sequence databases have been a good source of sequences to mine for simple sequence repeats (SSRs). The objective of this research was to evaluate 14 sequence collections from common bean for SSRs and to evaluate the diversity of the polymorphic microsatellites derived from these collections. SSRs were found in 10 of the GenBank sequence collections with an average of 11.3% of sequences containing microsatellite motifs. The most common motifs were based on tri- and dinucleotides. In a marker development programme, primers were designed for 125 microsatellites which were tested on a panel of 18 common bean genotypes. The markers were named as part of the bean microsatellite-database (BMd) series, and the average polymorphism information content was 0.404 for polymorphic markers and predicted well the genepool structure of common beans and the status of the wild and cultivated accessions that were included in the study. Therefore, the BMd series of microsatellites is useful for multiple studies of genetic relatedness and as anchor markers in future mapping of wide crosses in the species.  相似文献   

9.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

10.
The release rhythm of volatiles is an important physiological characteristic of plants, because the timing of release can affect the function of each particular volatile compound. However, most studies on volatiles release rhythms have been conducted using model plants, rather than crop plants. Here, we analyzed the variations in volatile compounds released from healthy and leafminer (Liriomyza huidobrensis)-infested kidney bean (Phaseolus vulgaris), an important legume crop plant, over a 24 h period. The constituents of the volatiles mixture released from plants were analyzed every 3 h starting from 08:00. The collected volatiles were identified and quantified by gas chromatography–mass spectrometry. Undamaged kidney bean plants released trace amounts of volatiles, with no obvious release rhythms. However, leafminer-damaged plants released large amounts of volatiles, in two main peaks. The main peak of emission was from 17:00 to 20:00, while the secondary peak was in the early morning. The terpene volatiles and (Z)-3-hexenyl acetate showed similar rhythms as that of total volatiles. However, the green leaf volatile (Z)-3-hexen-ol was emitted during the night with peak emission in the early morning. These results give us a clear picture of the volatiles release rhythms of kidney bean plants damaged by leafminer.Keywords : green leaves volatiles, Liriomyza huidobrensis, rhythm, terpene, (Z)-3-hexen-ol  相似文献   

11.
Mutch LA  Young JP 《Molecular ecology》2004,13(8):2435-2444
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.  相似文献   

12.
Studies were conducted in eastern Kenya to determine the common legume crop and weed hosts of Macrophomina phaseolina (Tassi) Goid., the inciter of charcoal rot disease. The effect of maize, sorghum, bean, and cowpea on the soil inoculum level was also investigated after field inoculation. All the legume crops and weeds tested were found to be infected by the pathogen after artificial inoculation. Common bean, soybean, cowpea were the most susceptible while pigeonpea, green gram, and hyacinth bean were moderately susceptible. Groundnut, chickpea. Cassia spp. and Crotalaria spp. were least susceptible after artificial inoculation, Monocropping of sorghum, maize, cowpea and common bean for three consecutive crop seasons increased M. Phaseolina soil inoculum in ascending order.  相似文献   

13.
Pachyrhizus erosus is a tuberous legume native to Central America that has great potential for development as a food crop. It produces both protein rich grain and starch filled tubers. There are two major limitations to its dietary use, the high levels of rotenone found in the grains and the low starch content of the tubers, both of which must be addressed, for development of the crop. The low variability of the existing gene pool of the genus limits the use of conventional plant breeding to address these problems. Genetic engineering technology is, therefore, being adopted. For this purpose, an efficient means of RNA isolation from yam bean tissues was developed. The quality of RNA obtained by this method was tested byin vitro translation and was sufficient for use in RT-PCR.  相似文献   

14.
15.
Nitrogen-fixing bacteria of the Bradyrhizobium genus are major symbionts of legume plants in American tropical forests, but little is known about the effects of deforestation and change in land use on their diversity and community structure. Forest clearing is followed by cropping of bean (Phaseolus vulgaris) and maize as intercropped plants in Los Tuxtlas tropical forest of Mexico. The identity of bean-nodulating rhizobia in this area is not known. Using promiscuous trap plants, bradyrhizobia were isolated from soil samples collected in Los Tuxtlas undisturbed forest, and in areas where forest was cleared and land was used as crop fields or as pastures, or where secondary forests were established. Rhizobia were also trapped by using bean plants. Bradyrhizobium strains were classified into genospecies by dnaK sequence analysis supported by recA, glnII and 16S-23S rDNA IGS loci analyses. A total of 29 genospecies were identified, 24 of which did not correspond to any described taxa. A reduction in Bradyrhizobium diversity was observed when forest was turned to crop fields or pastures. Diversity seemed to recover to primary forest levels in secondary forests that derived from abandoned crop fields or pastures. The shifts in diversity were not related to soil characteristics but seemingly to the density of nodulating legumes present at each land use system (LUS). Bradyrhizobium community composition in soils was dependent on land use; however, similarities were observed between crop fields and pastures but not among forest and secondary forest. Most Bradyrhizobium genospecies present in forest were not recovered or become rare in the other LUS. Rhizobium etli was found as the dominant bean-nodulating rhizobia present in crop fields and pastures, and evidence was found that this species was introduced in Los Tuxtlas forest.  相似文献   

16.
We have previously described a bioinformatics pipeline identifying comparative anchor-tagged sequence (CATS) loci, combined with design of intron-spanning primers. The derived anchor markers defining the linkage position of homologous genes are essential for evaluating genome conservation among related species and facilitate transfer of genetic and genome information between species. Here we validate this global approach in the common bean and in the AA genome complement of the allotetraploid peanut. We present the successful conversion of approximately 50% of the bioinformatics-defined primers into legume anchor markers in bean and diploid Arachis species. One hundred and four new loci representing single-copy genes were added to the existing bean map. These new legume anchor-marker loci enabled the alignment of genetic linkage maps through corresponding genes and provided an estimate of the extent of synteny and collinearity. Extensive macrosynteny between Lotus and bean was uncovered on 8 of the 11 bean chromosomes and large blocks of macrosynteny were also found between bean and Medicago. This suggests that anchor markers can facilitate a better understanding of the genes and genetics of important traits in crops with largely uncharacterized genomes using genetic and genome information from related model plants.  相似文献   

17.
干旱,半干旱地区作物育种的困惑与出路   总被引:5,自引:2,他引:5  
粮食问题主要取决于一年生谷类作物产量。作物产量低而不稳的原因主要是病虫害及各种胁迫生境,其中干旱缺水为最大的产量限制因素,提高作物生产力的途径有二:其一是改善作物的生长环境,其二是通过育种手段选育在各肿胁迫环境中具有优良表现的基因型(品种)。矮秆化育种手段使水肥充裕区小麦产量有显著的提高,是通过提高收获指数获得的。干旱、半干旱地区育种却未能获得显著效果,要提高干旱、半干旱地区小麦育种的成效,对干旱  相似文献   

18.
An ambitious aim in plant breeding and biotechnology is to increase the protein content of crop seeds used for food and feed. Using an approach to manipulate assimilate partitioning, we succeeded in elevating the protein content in legume seeds up to 50%. Transgenic bean plants were generated which express a Corynebacterium glutamicum phosphoenolpyruvate carboxylase (PEPC) in a seed-specific manner. The bacterial enzyme was not feedback inhibited by malate. Transgenic seeds showed a higher [14C]-CO2 uptake and about a threefold increased incorporation of labelled carbon into proteins. Changed metabolite profiles of maturing cotyledons indicated a shift of metabolic fluxes from sugars/starch into organic acids and free amino acids. These changes were consistent with an increased carbon flow through the anaplerotic pathway catalysed by PEPC. Consequently, transgenic seeds accumulated up to 20% more protein per gram seed dry weight. Additionally, seed dry weight was higher by 20%-30%. We conclude that PEPC in seeds is a promising target for molecular plant breeding.  相似文献   

19.
Cluster bean (Cyamopsis tetragonoloba) is a legume that is grown widely on the Indian subcontinent. Leaf curl symptoms of cluster bean plants collected in the Punjab, Pakistan, were shown to be associated with the begomovirus Papaya leaf curl virus; the first time this virus has been identified infecting cluster bean in Pakistan. The virus was shown to be associated with Tomato leaf curl betasatellite. Additionally, some cluster bean plants were shown to also harbour Cotton leaf curl Multan alphasatellite. The significance of these findings is discussed.  相似文献   

20.
普通菜豆种质资源遗传多样性研究进展   总被引:8,自引:1,他引:7  
普通菜豆于15世纪从美洲直接引入中国,作为重要的食用豆类作物之一,在我国的许多地区广泛种植。本文对普通菜豆的起源、驯化、传播以及遗传多样性研究等方面的进展进行综述,并根据普通菜豆育种和生产中存在的问题及今后的研究方向提出一些建议,旨在为普通菜豆的种质收集保存以及合理利用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号