首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cyclic nucleotide-gated (CNG) channel of retinal rod photoreceptor cells is an allosteric protein whose activation is coupled to a conformational change in the ligand-binding site. The bovine rod CNG channel can be activated by a number of different agonists, including cGMP, cIMP, and cAMP. These agonists span three orders of magnitude in their equilibrium constants for the allosteric transition. We recorded single-channel currents at saturating cyclic nucleotide concentrations from the bovine rod CNG channel expressed in Xenopus oocytes as homomultimers of alpha subunits. The median open probability was 0.93 for cGMP, 0.47 for cIMP, and 0.01 for cAMP. The channels opened to a single conductance level of 26-30 pS at +80 mV. Using signal processing methods based on hidden Markov models, we determined that two closed and one open states are required to explain the gating at saturating ligand concentrations. We determined the maximum likelihood rate constants for two gating schemes containing two closed (denoted C) and one open (denoted O) states. For the C left and right arrow C left and right arrow O scheme, all rate constants were dependent on cyclic nucleotide. For the C left and right arrow O left and right arrow C scheme, the rate constants for only one of the transitions were cyclic nucleotide dependent. The opening rate constant was fastest for cGMP, intermediate for cIMP, and slowest for cAMP, while the closing rate constant was fastest for cAMP, intermediate for cIMP, and slowest for cGMP. We propose that interactions between the purine ring of the cyclic nucleotide and the binding domain are partially formed at the time of the transition state for the allosteric transition and serve to reduce the transition state energy and stabilize the activated conformation of the channel. When 1 microM Ni2+ was applied in addition to cyclic nucleotide, the open time increased markedly, and the closed time decreased slightly. The interactions between H420 and Ni2+ occur primarily after the transition state for the allosteric transition.  相似文献   

2.
Calmodulin (CaM), the primary intracellular Ca2+ receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12?nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the 15N–1H HSQC cross-peaks of the 15N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of 15N–1H HSQC cross-peaks of the 15N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.  相似文献   

3.
Rod vision begins when 11-cis-retinal absorbs a photon and isomerizes to all-trans-retinal (ATR) within the photopigment, rhodopsin. Photoactivated rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP, thereby closing cyclic nucleotide-gated (CNG) ion channels. After isomerization, ATR dissociates from rhodopsin, and after a bright light, this release is expected to produce a large surge of ATR near the CNG channels. Using excised patches from Xenopus oocytes, we recently showed that ATR shuts down cloned rod CNG channels, and that this inhibition occurs in the nanomolar range (aqueous concentration) at near-physiological concentrations of cGMP. Here we further characterize the ATR effect and present mechanistic information. ATR was found to decrease the apparent cGMP affinity, as well as the maximum current at saturating cGMP. When ATR was applied to outside-out patches, inhibition was much slower and less effective than when it was applied to inside-out patches, suggesting that ATR requires access to the intracellular surface of the channel or membrane. The apparent ATR affinity and maximal inhibition of heteromeric (CNGA1/CNGB1) channels was similar to that of homomeric (CNGA1) channels. Single-channel and multichannel data suggest that channel inhibition by ATR is reversible. Inhibition by ATR was not voltage dependent, and the form of its dose-response relation suggested multiple ATR molecules interacting per channel. Modeling of the data obtained with cAMP and cGMP suggests that ATR acts by interfering with the allosteric opening transition of the channel and that it prefers closed, unliganded channels. It remains to be determined whether ATR acts directly on the channel protein or instead alters channel-bilayer interactions.  相似文献   

4.
Köhler C  Neuhaus G 《FEBS letters》2000,471(2-3):133-136
The recently identified cyclic nucleotide-gated ion channels (AtCNGCs) from Arabidopsis thaliana have the ability to bind calmodulin. Using two different methods, we mapped the binding site of AtCNGC1 to the last predicted alpha helix of the cyclic nucleotide binding domain. This is in contrast to CNGCs from animals, where the calmodulin binding site is located in the N-terminus, implying that different mechanisms for CNGC modulation have evolved in animals and plants. Furthermore, we demonstrate that AtCNGC1 and AtCNGC2 have different calmodulin binding affinities and we provide evidence for target specificities among calmodulin isoforms.  相似文献   

5.
Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels   总被引:8,自引:0,他引:8  
Zheng J  Zagotta WN 《Neuron》2004,42(3):411-421
Native ion channels are precisely tuned to their physiological role in neuronal signaling. This tuning frequently involves the controlled assembly of heteromeric channels comprising multiple types of subunits. Cyclic nucleotide-gated (CNG) channels of olfactory neurons are tetramers and require three types of subunits, CNGA2, CNGA4, and CNGB1b, to exhibit properties necessary for olfactory transduction. Using fluorescently tagged subunits and fluorescence resonance energy transfer (FRET), we find the subunit composition of heteromeric olfactory channels in the surface membrane is fixed, with 2:1:1 CNGA2:CNGA4:CNGB1b. Furthermore, when expressed individually with CNGA2, CNGA4 and CNGB1b subunits were still present in only a single copy and, when expressed alone, did not self-assemble. These results suggest that the precise assembly of heteromeric olfactory channels results from a mechanism where CNGA4 and CNGB1b subunits have a high affinity for CNGA2 but not for self-assembly, precluding more than one CNGA4 or CNGB1b subunit in the channel complex.  相似文献   

6.
Murphy GJ  Isaacson JS 《Neuron》2003,37(4):639-647
Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfactory bulb glomeruli. Cyclic nucleotides increase intracellular Ca(2+) in ORN terminals and enhance spontaneous transmitter release; at higher concentrations, cyclic nucleotides depress evoked transmission by altering olfactory nerve excitability. Cyclic nucleotides have no effect on transmission or nerve excitability, however, in mice lacking olfactory CNGCs. Taken together, our results identify a novel role for presynaptic CNGCs in modulating neurotransmission.  相似文献   

7.
8.
9.
Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels   总被引:19,自引:0,他引:19  
Electrophysiological studies were conducted on the cloned plant cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC1 from Arabidopsis, and NtCBP4 from tobacco (Nicotiana tobacum). The nucleotide coding sequences for these proteins were expressed in Xenopus laevis oocytes or HEK 293 cells. Channel characteristics were evaluated using voltage clamp analysis of currents in the presence of cAMP. AtCNGC2 was demonstrated to conduct K(+) and other monovalent cations, but exclude Na(+); this conductivity profile is unique for any ion channel not possessing the amino acid sequence found in the selectivity filter of K(+)-selective ion channels. Application of cAMP evoked currents in membrane patches of oocytes injected with AtCNGC2 cRNA. Direct activation of the channel by cyclic nucleotide, demonstrated by application of cyclic nucleotide to patches of membranes expressing such channels, is a hallmark characteristic of this ion channel family. Voltage clamp studies (two-electrode configuration) demonstrated that AtCNGC1 and NtCBP4 are also cyclic nucleotide-gated channels. Addition of a lipophilic analog of cAMP to the perfusion bath of oocytes injected with NtCBP4 and AtCNGC1 cRNAs induced inward rectified, noninactivating K(+) currents.  相似文献   

10.
Dissecting intersubunit contacts in cyclic nucleotide-gated ion channels   总被引:7,自引:0,他引:7  
Rosenbaum T  Gordon SE 《Neuron》2002,33(5):703-713
In cyclic nucleotide-gated (CNG) ion channels, binding of cGMP or cAMP drives a conformational change that leads to opening of an ion-conducting pore. One region implicated in the coupling of ligand binding to opening of the pore is the C linker region. Here, we used crosslinking of endogenous cysteines to study interregion proximity. We demonstrate that an individual amino acid--C481--in the C linker region of each of two neighboring subunits can form a disulfide bond. Further, using tandem dimers, we show that a disulfide bond between C35 in the N-terminal region and C481 in the C linker region can form either within a subunit or between subunits. From our data on proximity between individual amino acids and previous studies, a picture emerges of the C linker as a potential dimerization interface.  相似文献   

11.
I M Shammat  S E Gordon 《Neuron》1999,23(4):809-819
Cyclic nucleotide-gated (CNG) ion channels mediate the response to light in retinal rods. They are tetramers of two homologous subunits (alpha and beta), each of which is essential for the function of the channels in vivo. We have investigated the stoichiometry and arrangement of these two subunits to determine how they come together within an individual channel complex. We exploited the very specific geometric and spatial requirements for forming a high-affinity Ni2+-binding site to examine the number and relative positions of the subunits. We found that only an order of alpha/alpha/beta/beta could account qualitatively and quantitatively for the observed intersubunit coordination of Ni2+ in wild-type and mutant alpha/beta channels. Furthermore, our results suggest a structural dimerization among like subunits, at least at the level of the Ni2+-binding site.  相似文献   

12.
We irradiated cyclic nucleotide-gated ion channels in situ with ultraviolet light to probe the role of aromatic residues in ion channel function. UV light reduced the current through excised membrane patches from Xenopus oocytes expressing the alpha subunit of bovine retinal cyclic nucleotide-gated channels irreversibly, a result consistent with permanent covalent modification of channel amino acids by UV light. The magnitude of the current reduction depended only on the total photon dose delivered to the patches, and not on the intensity of the exciting light, indicating that the functionally important photochemical modification(s) occurred from an excited state reached by a one-photon absorption process. The wavelength dependence of the channels' UV light sensitivity (the action spectrum) was quantitatively consistent with the absorption spectrum of tryptophan, with a small component at long wavelengths, possibly due to cystine absorption. This spectral analysis suggests that UV light reduced the currents at most wavelengths studied by modifying one or more "target" tryptophans in the channels. Comparison of the channels' action spectrum to the absorption spectrum of tryptophan in various solvents suggests that the UV light targets are in a water-like chemical environment. Experiments on mutant channels indicated that the UV light sensitivity of wild-type channels was not conferred exclusively by any one of the 10 tryptophan residues in a subunit. The similarity in the dose dependences of channel current reduction and tryptophan photolysis in solution suggests that photochemical modification of a small number of tryptophan targets in the channels is sufficient to decrease the currents.  相似文献   

13.
In vertebrate olfactory receptors, cAMP produced by odorants opens cyclic nucleotide-gated (CNG) channels, which allow Ca(2+) entry and depolarization of the cell. These CNG channels are composed of alpha subunits and at least two types of beta subunits that are required for increased cAMP selectivity. We studied the molecular basis for the altered cAMP selectivity produced by one of the beta subunits (CNG5, CNCalpha4, OCNC2) using cloned rat olfactory CNG channels expressed in Xenopus oocytes. Compared with alpha subunit homomultimers (alpha channels), channels composed of alpha and beta subunits (alpha+beta channels) were half-activated (K(1/2)) by eightfold less cAMP and fivefold less cIMP, but similar concentrations of cGMP. The K(1/2) values for heteromultimers of the alpha subunit and a chimeric beta subunit with the alpha subunit cyclic nucleotide-binding region (CNBR) (alpha+beta-CNBRalpha channels) were restored to near the values for alpha channels. Furthermore, a single residue in the CNBR could account for the altered ligand selectivity. Mutation of the methionine residue at position 475 in the beta subunit to a glutamic acid as in the alpha subunit (beta-M475E) reverted the K(1/2,cAMP)/K(1/2,cGMP) and K(1/2, cIMP)/K(1/2,cGMP) ratios of alpha+beta-M475E channels to be very similar to those of alpha channels. In addition, comparison of alpha+beta-CNBRalpha channels with alpha+beta-M475E channels suggests that the CNBR of the beta subunit contains amino acid differences at positions other than 475 that produce an increase in the apparent affinity for each ligand. Like the wild-type beta subunit, the chimeric beta/alpha subunits conferred a shallow slope to the dose-response curves, increased voltage dependence, and caused desensitization. In addition, as for alpha+beta channels, block of alpha+betaCNBRalpha channels by internal Mg(2+) was not steeply voltage-dependent (zdelta approximately 1e(-)) as compared to block of alpha channels (zdelta 2.7e(-)). Thus, the ligand-independent effects localize outside of the CNBR. We propose a molecular model to explain how the beta subunit alters ligand selectivity of the heteromeric channels.  相似文献   

14.
Cyclic nucleotide-gated (CNG) channels are critical components in the visual and olfactory signal transduction pathways, and they primarily gate in response to changes in the cytoplasmic concentration of cyclic nucleotides. We previously found that the ability of the native rod CNG channel to be opened by cGMP was markedly inhibited by analogues of diacylglycerol (DAG) without a phosphorylation reaction (Gordon, S.E., J. Downing-Park, B. Tam, and A.L. Zimmerman. 1995. Biophys. J. 69:409-417). Here, we have studied cloned bovine rod and rat olfactory CNG channels expressed in Xenopus oocytes, and have determined that they are differentially inhibited by DAG. At saturating [cGMP], DAG inhibition of homomultimeric (alpha subunit only) rod channels was similar to that of the native rod CNG channel, but DAG was much less effective at inhibiting the homomultimeric olfactory channel, producing only partial inhibition even at high [DAG]. However, at low open probability (P(o)), both channels were more sensitive to DAG, suggesting that DAG is a closed state inhibitor. The Hill coefficients for DAG inhibition were often greater than one, suggesting that more than one DAG molecule is required for effective inhibition of a channel. In single-channel recordings, DAG decreased the P(o) but not the single-channel conductance. Results with chimeras of rod and olfactory channels suggest that the differences in DAG inhibition correlate more with differences in the transmembrane segments and their attached loops than with differences in the amino and carboxyl termini. Our results are consistent with a model in which multiple DAG molecules stabilize the closed state(s) of a CNG channel by binding directly to the channel and/or by altering bilayer-channel interactions. We speculate that if DAG interacts directly with the channel, it may insert into a putative hydrophobic crevice among the transmembrane domains of each subunit or at the hydrophobic interface between the channel and the bilayer.  相似文献   

15.
Activation of cyclic nucleotide-gated (CNG) ion channels involves a conformational change in the channel protein referred to as the allosteric transition. The amino terminal region and the carboxyl terminal cyclic nucleotide-binding domain of CNG channels have been shown to be involved in the allosteric transition, but the sequence of molecular events occurring during the allosteric transition is unknown. We recorded single-channel currents from bovine rod CNG channels in which mutations had been introduced in the binding domain at position 604 and/or the rat olfactory CNG channel amino terminal region had been substituted for the bovine rod amino terminal region. Using a hidden Markov modeling approach, we analyzed the kinetics of these channels activated by saturating concentrations of cGMP, cIMP, and cAMP. We used thermodynamic mutant cycles to reveal an interaction during the allosteric transition between the purine ring of the cyclic nucleotides and the amino acid at position 604 in the binding site. We found that mutations at position 604 in the binding domain alter both the opening and closing rate constants for the allosteric transition, indicating that the interactions between the cyclic nucleotide and this amino acid are partially formed at the time of the transition state. In contrast, the amino terminal region affects primarily the closing rate constant for the allosteric transition, suggesting that the state-dependent stabilizing interactions between amino and carboxyl terminal regions are not formed at the time of the transition state for the allosteric transition. We propose that the sequence of events that occurs during the allosteric transition involves the formation of stabilizing interactions between the purine ring of the cyclic nucleotide and the amino acid at position 604 in the binding domain followed by the formation of stabilizing interdomain interactions.  相似文献   

16.
Calmodulin (CaM), the primary receptor for intracellular Ca2+, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Olfactory cyclic nucleotide-gated ion channels (OLF channels) mediate olfactory transduction in olfactory receptor neurons. The opening of OLF leads to a rise in cytosolic concentration of Ca2+, upon binding to Ca2+, CaM disrupts the open conformation by binding to the CaM-binding domain in the N-terminal region and triggers the close mechanism. In order to unravel the regulatory role of CaM from structural point of view, NMR techniques were used to characterize the structure of CaM in association with the CaM binding domain of rat OLF channel (OLFp, 28 residues). Our data indicated that two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not inter-exchangeable within the NMR time scale. Here, we report the full backbone and side chain resonance assignments of these two complexes of CaM/OLFp.  相似文献   

17.
Brown RL  Haley TL  Snow SD 《Biochemistry》2000,39(2):432-441
First discovered in the sensory epithelium of the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels have now been found in tissues throughout the body. Native rod CNG channels are tetramers composed of homologous, but distinct, alpha- and beta-subunits. The goal of this study was to develop a novel method for targeting covalent attachment of cGMP to individual subunit types. Toward this goal, we have found that treatment of membrane patches expressing rod alpha-subunit channels with sulfhydryl-reactive derivatives of cGMP resulted in irreversible activation. The persistent currents were sensitive to block by both Mg(2+) and tetracaine. Pretreatment of the patch with the sulfhydryl-blocking reagents N-ethylmaleimide (NEM) and bis-dithionitrobenzoic acid (DTNB) prevented covalent activation; the effect of DTNB was reversed by reduction with DTT. Furthermore, the process of covalent activation was dramatically slowed by the presence of an excess of 8-Br-cGMP. These results suggested that covalent activation resulted from the tethering of cGMP near the channel's ligand-binding sites by reaction with an endogenous cysteine. The alpha-subunit of the rod channel contains seven cysteine residues, and we set out to determine the site of attachment by site-directed mutagenesis. Surprisingly, irreversible activation was not abolished by elimination of all seven cysteine residues. This result suggests that the site of attachment is on a tightly associated protein, rather than on the channel protein itself. To further investigate these results, we treated patches containing irreversibly activated channels with 100 microg/mL trypsin and discovered two modes of covalent activation. One type developed rapidly and was removed by trypsin treatment, and the second developed slowly and was resistant to trypsin treatment. Both types of covalent activation were present in all mutants tested and were also present when CNG channels were expressed in HEK-293 cells. These results suggest that CNG channel subunits may associate with endogenous proteins when they are expressed in heterologous systems.  相似文献   

18.
Regulation of cyclic nucleotide-gated channels   总被引:9,自引:0,他引:9  
Cyclic nucleotide-gated (CNG) channels are found in several cell types, and are best studied in photoreceptors and olfactory sensory neurons. There, CNG channels are gated by the second messengers of the visual and olfactory signalling cascades, cGMP and cAMP respectively, and operate as transduction channels generating the stimulus-induced receptor potentials. In visual and olfactory sensory cells CNG channels conduct cationic currents. Calcium can contribute a large fraction of this current, and calcium influx serves a modulatory role in CNG-channel mediated signal transduction. There have been recent developments in our understanding of how the regulation of CNG channels contributes to the physiological properties of photoreceptors and olfactory sensory cells, and in particular on the role of calcium-mediated feedback.  相似文献   

19.
Peptide toxins are invaluable tools for studying the structure and physiology of ion channels. Pseudechetoxin (PsTx) is the first known peptide toxin that targets cyclic nucleotide-gated (CNG) ion channels, which play a critical role in sensory transduction in the visual and olfactory systems. PsTx inhibited channel currents at low nM concentrations when applied to the extracellular face of membrane patches expressing olfactory CNGA2 subunits. Surprisingly, 500 nM PsTx did not inhibit currents through channels formed by the CNGA3 subunit from cone photoreceptors. We have exploited this difference to identify the PsTx-binding site on the extracellular face of CNG channels. Studies using chimeric channels revealed that transplantation of the pore domain from CNGA2 was sufficient to confer high affinity PsTx binding upon a CNGA3 background. To further define the binding site, reciprocal mutations were made at 10 nonidentical amino acid residues in this region. We found that two residues in CNGA2, D316 and Y321, were essential for high-affinity inhibition by PsTx. Furthermore, replacement of both residues was required to confer high-affinity PsTx inhibition upon CNGA3. Several other residues, including E325, also form favorable interactions with PsTx. In the CNGA2-E325K mutant, PsTx affinity was reduced by approximately 5-fold to 120 nM. An electrostatic interaction with D316 does not appear to be the primary determinant of PsTx affinity, as modification of the D316C mutant with a negatively charged methanethiosulfonate reagent did not restore high affinity inhibition. The residues involved in PsTx binding are found within the pore turret and helix, in similar positions to residues that form the receptor for pore-blocking toxins in voltage-gated potassium channels. Furthermore, biophysical properties of PsTx block, including an unfavorable interaction with permeant ions, also suggest that it acts as a pore blocker. In summary, PsTx seems to occlude the entrance to the pore by forming high-affinity contacts with the pore turret, which may be larger than that found in the KcsA structure.  相似文献   

20.
Cyclic nucleotide-gated (CNG) ion channels of retinal photoreceptors and olfactory neurons are multimeric proteins of unknown stoichiometry. To investigate the subunit interactions that occur during CNG channel activation, we have used tandem cDNA constructs of the rod CNG channel to generate heteromultimeric channels composed of wild-type and mutant subunits. We introduced point mutations that affect channel activation: 1) D604M, which alters the relative ability of agonists to promote the allosteric conformational change(s) associated with channel opening, and 2) T560A, which primarily affects the initial binding affinity for cGMP, and to a lesser extent, the allosteric transition. At saturating concentrations of agonist, heteromultimeric channels were intermediate between wild-type and mutant homomultimers in agonist efficacy and apparent affinity for cGMP, cIMP, and cAMP, consistent with a model for the allosteric transition involving a concerted conformational change in all of the channel subunits. Results were also consistent with a model involving independent transitions in two or three, but not one or four, of the channel subunits. The behavior of the heterodimers implies that the channel stoichiometry is some multiple of 2 and is consistent with a tetrameric quaternary structure for the functional channel complex. Steady-state dose-response relations for homomultimeric and heteromultimeric channels were well fit by a Monod, Wyman, and Changeux model with a concerted allosteric opening transition stabilized by binding of agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号