首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several studies have shown that erythropoietin (EPO) can protect the kidneys from ischemia-reperfusion injury and can raise the hemoglobin (Hb) concentration. Recently, the EPO molecule modified by carbamylation (CEPO) has been identified and was demonstrated to be able to protect several organs without increasing the Hb concentration. We hypothesized that treatment with CEPO would protect the kidneys from tubular apoptosis and inhibit subsequent tubulointerstitial injury without erythropoiesis. The therapeutic effect of CEPO was evaluated using a rat ischemia-reperfusion injury model. Saline-treated kidneys exhibited increased tubular apoptosis with interstitial expression of alpha-smooth muscle actin (alpha-SMA), while EPO treatment inhibited tubular apoptosis and alpha-SMA expression to some extent. On the other hand, CEPO-treated kidneys showed minimal tubular apoptosis with limited expression of alpha-SMA. Moreover, CEPO significantly promoted tubular epithelial cell proliferation without erythropoiesis. In conclusion, we identified a new therapeutic approach using CEPO to protect kidneys from ischemia-reperfusion injury.  相似文献   

2.
Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.  相似文献   

3.
4.
5.
Expression of dematin (protein 4.9) during avian erythropoiesis   总被引:2,自引:0,他引:2  
The expression of avian erythrocyte dematin (protein 4.9) was studied in short-term tissue culture and in vivo in chickens. Our results show that erythrocyte dematin consists of five immunoreactive variants of 44, 47, 49, 50, and 52 kDa which are differentially synthesized and accumulated during avian embryonic development. While synthesis of the 47 and 49 kDa forms of dematin is constitutive, the 44 kDa variant is synthesized primarily early during development (day 6), and the 50 and 52 kDa variants are synthesized at mid to late times (days 10-15). Short-term tissue culture experiments show that much of the 47 and 49 kDa forms of dematin synthesized in 5-day erythrocytes is degraded, whereas no degradation of newly synthesized polypeptides is detected later in development (mature, 20-day erythrocytes). Experiments performed in vivo are consistent with the observations in short-term tissue culture and demonstrate that the stable form of dematin is synthesized late in erythropoiesis during the reticulocyte stage. The accumulation of dematin and the timing of its assembly relative to beta-spectrin suggest a role for dematin in stabilizing the cytoskeleton of the terminally differentiated erythrocyte.  相似文献   

6.
Cholesterol is an essential structural component in the cell membranes of most vertebrates. The biophysical properties of cholesterol and the enzymology of cholesterol metabolism provide the basis for how cells handle cholesterol and exchange it with one another. A tightly controlled--but only partially characterized--network of cellular signalling and lipid transfer systems orchestrates the functional compartmentalization of this lipid within and between organellar membranes. This largely dictates the exchange of cholesterol between tissues at the whole body level. Increased understanding of these processes and their integration at the organ systems level provides fundamental insights into the physiology of cholesterol trafficking.  相似文献   

7.
MSP is a serum protein belonging to the plasminogen-related kringle domain protein family. In addition to macrophages, epithelial cells are also MSP targets. MSP is a multifunctional factor regulating cell adhesion and motility, growth and survival. MSP mediates its biological activities by activating a transmembrane receptor tyrosine kinase called RON in humans or SKT in mice. MSP can protect epithelial cells from apoptosis by activating two independent signals in the PI3-K/AKT or the MAPK pathway. The MAPK pathway mediates the MSP anti-apoptotic effect only if additional signaling pathways are activated through adhesion. This indicates that MSP receptors and integrins, the receptors mediating cell-matrix-dependent adhesion, can collaborate in promotion of cell survival. This adhesion-dependent pathway, which is essential for the MAPK-mediated anti-apoptotic effect, remains to be identified. A hypothesis that Stat3 might represent a key component of the adhesion-induced anti-apoptotic pathway is presented in this review.  相似文献   

8.
Ubiquitination is a regulated post-translational modification that conjugates ubiquitin (Ub) to lysine residues of target proteins and determines their intracellular fate. The canonical role of ubiquitination is to mediate degradation by the proteasome of short-lived cytoplasmic proteins that carry a single, polymeric chain of Ub on a specific lysine residue. However, protein modification by Ub has much broader and diverse functions involved in a myriad of cellular processes. Monoubiquitination, at one or multiple lysine residues of transmembrane proteins, influences their stability, protein-protein recognition, activity and intracellular localization. In these processes, Ub functions as an internalization signal that sends the modified substrate to the endocytic/sorting compartments, followed by recycling to the plasma membrane or degradation in the lysosome. E3 ligases play a pivotal role in ubiquitination, because they recognize the acceptor protein and hence dictate the high specificity of the reaction. The multitude of E3s present in nature suggests their nonredundant mode of action and the need for their controlled regulation. Here we give a short account of E3 ligases that specifically modify and regulate membrane proteins. We emphasize the intricate network of interacting proteins that contribute to the substrate-E3 recognition and determine the substrate's cellular fate.  相似文献   

9.
10.
Macrophage stimulating protein is a novel neurotrophic factor   总被引:3,自引:0,他引:3       下载免费PDF全文
Macrophage stimulating protein (MSP), also known as hepatocyte growth factor-like, is a soluble cytokine that belongs to the family of the plasminogen-related growth factors (PRGFs). PRGFs are alpha/beta heterodimers that bind to transmembrane tyrosine kinase receptors. MSP was originally isolated as a chemotactic factor for peritoneal macrophages. Through binding to its receptor, encoded by the RON gene, it stimulates dissociation of epithelia and works as an inflammatory mediator by repressing the production of nitric oxide (NO). Here, we identify a novel role for MSP in the central nervous system. As a paradigm to analyze this function we chose the hypoglossal system of adult mice. We demonstrate in vivo that either administration of exogenous MSP or transplantation of MSP-producing cells at the proximal stump of the resected nerve is sufficient to prevent motoneuron atrophy upon axotomy. We also show that the MSP gene is expressed in the tongue, the target of the hypoglossal nerve, and that MSP induces biosynthesis of Ron receptor in the motoneuron somata. Finally, we show that MSP suppresses NO production in the injured hypoglossal nuclei. Together, these data suggest that MSP is a novel neurotrophic factor for cranial motoneurons and, by regulating the production of NO, may have a role in brain plasticity and regeneration.  相似文献   

11.
Expression of constitutively active Akt3 was found to increase the size of MCF-7 cells approximately twofold both in vitro and in vivo. A regulatable version of Akt1 (MER-Akt) was also found capable of inducing a twofold increase in the size of H4IIE rat hepatoma cells. Rapamycin, a specific inhibitor of mTOR function, was found to inhibit the Akt-induced increase in cell size by 70%, presumably via inhibition of the Akt-induced increase in protein synthesis. To determine whether Akt could be inhibiting protein degradation, thereby contributing to its ability to induce an increase in cell size, we conducted protein degradation experiments in the H4IIE cell line. Activation of MER-Akt was found to inhibit protein degradation to a degree comparable to insulin treatment. The effects of these two agents on protein degradation were not additive, thereby suggesting that they were acting on a similar pathway. An inhibitor of the phosphatidylinositol 3-kinase pathway, LY-294002, blocked both insulin- and Akt-induced inhibition of protein degradation, again consistent with the hypothesis that both agents were acting on the same pathway. In contrast, rapamycin did not block the ability of either agent to inhibit protein degradation. These results indicate that Akt increases cell size through both mTOR-dependent and -independent pathways and that the latter involves inhibition of protein degradation. These studies are also consistent with the hypothesis that insulin's ability to regulate protein degradation is to a large extent mediated via Akt.  相似文献   

12.
Many important signaling proteins require the posttranslational addition of fatty acid chains for their proper subcellular localization and function. One such modification is the addition of palmitoyl moieties by enzymes known as palmitoyl acyltransferases (PATs). Substrates for PATs include C-terminally farnesylated proteins, such as H- and N-Ras, as well as N-terminally myristoylated proteins, such as many Src-related tyrosine kinases. The molecular and biochemical characterization of PATs has been hindered by difficulties in developing effective methods for the analysis of PAT activity. In this study, we describe the use of cell-permeable, fluorescently labeled lipidated peptides that mimic the PAT recognition domains of farnesylated and myristoylated proteins. These PAT substrate mimetics are accumulated by SKOV3 cells in a saturable and time-dependent manner. Although both peptides are rapidly palmitoylated, the SKOV3 cells have a greater capacity to palmitoylate the myristoylated peptide than the farnesylated peptide. Confocal microscopy indicated that the palmitoylated peptides colocalized with Golgi and plasma membrane markers, whereas the corresponding nonpalmitoylatable peptides accumulated in the Golgi but did not traffic to the plasma membrane. Overall, these studies indicate that the lipidated peptides provide useful cellular probes for quantitative and compartmentalization studies of protein palmitoylation in intact cells.  相似文献   

13.
A DNA polymerase alpha-primase complex, which had been purified by means of immunoaffinity column chromatography, showed little activity in a reaction mixture composed of Tris-HCl buffer, but showed full activity in potassium phosphate buffer. It was found that potassium ion is required for the reaction by the immunoaffinity-purified enzyme. On the other hand, the DNA polymerase alpha purified by the orthodox biochemical method showed full activity in both buffer systems. A protein factor, which could restore the activity of immunoaffinity-purified DNA polymerase alpha-primase complex in the potassium-free reaction mixture, was separated from biochemically purified DNA polymerase alpha. The factor, designated as factor T, was stable to heat up to 70 degrees C, but was sensitive to trypsin. It sedimented at about 4S through a glycerol gradient. SDS-polyacrylamide gel electrophoresis revealed two polypeptide bands at 56 and 54 kDa. By immunoprecipitation, the factor T was shown to be physically associated with DNA polymerase alpha-primase complex. The stimulation was also observed with poly[d(A-T)], primed M13 DNA, and heat-denatured DNA.  相似文献   

14.
NESP55 (neuroendocrine secretory protein of M(r) 55,000) is a paternally imprinted proteoglycan, expressed specifically in endocrine cells and the nervous system. We investigated the subcellular localization and secretion of NESP55 in AtT-20 cells. NESP55 accumulated in the medium linearly over 24 h exceeding its intracellular content 3.7-fold by that time. Incubation of cells at 16 degrees C, to block protein export, inhibited basal secretion by 79%. Stimulation of AtT-20 cells with 8-Br-cAMP increased secretion of NESP55 by only 45%. The NESP55 secretory vesicles sedimented at a density of 1.2-1.4 M, which is slightly lighter than that of the large dense core vesicles. Immunofluorescence studies revealed immunoreactivity in the Golgi apparatus and a punctuate staining of processes or neurites. Our data demonstrate that NESP55 is mainly sorted to and released from a population of constitutive secretory vesicles, which are transported out of the perikarya into processes or axons. In addition, some NESP55 is also routed to the regulated pathway. The signal peptide of NESP55, as determined with peptide antisera, is 46 amino acids long and represents the best conserved region of this molecule suggesting that the signal peptide may have a function of its own. The subcellular localization and export of NESP55 from cells are reminiscent of neuronal proteoglycans forming the extracellular matrix, which are implicated in the development and maintenance of neuronal circuits and mechanisms of axonal guidance.  相似文献   

15.
Vascular endothelial growth factor (VEGF) exerts crucial functions during pathological angiogenesis and normal physiology. We observed increased hematocrit (60-75%) after high-grade inhibition of VEGF by diverse methods, including adenoviral expression of soluble VEGF receptor (VEGFR) ectodomains, recombinant VEGF Trap protein and the VEGFR2-selective antibody DC101. Increased production of red blood cells (erythrocytosis) occurred in both mouse and primate models, and was associated with near-complete neutralization of VEGF corneal micropocket angiogenesis. High-grade inhibition of VEGF induced hepatic synthesis of erythropoietin (Epo, encoded by Epo) >40-fold through a HIF-1alpha-independent mechanism, in parallel with suppression of renal Epo mRNA. Studies using hepatocyte-specific deletion of the Vegfa gene and hepatocyte-endothelial cell cocultures indicated that blockade of VEGF induced hepatic Epo by interfering with homeostatic VEGFR2-dependent paracrine signaling involving interactions between hepatocytes and endothelial cells. These data indicate that VEGF is a previously unsuspected negative regulator of hepatic Epo synthesis and erythropoiesis and suggest that levels of Epo and erythrocytosis could represent noninvasive surrogate markers for stringent blockade of VEGF in vivo.  相似文献   

16.
V P Knutson 《FASEB journal》1991,5(8):2130-2138
The insulin receptor is a dynamic cellular macromolecule that moves through various compartments of the cell throughout its lifetime. This review addresses the processes involved in the synthetic assembly of the insulin receptor; the interaction of insulin with the receptor protein; the receptor-mediated endocytosis of insulin; and the role of receptor tyrosine and serine phosphorylation in both endocytosis and recycling. This discussion is concluded by examining the data available on the intracellular inactivation and degradation of the receptor protein. Emphasis is given to the cellular regulation imposed at each of these steps in receptor processing, and how the use of pharmacologic and physiologic perturbants has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of the insulin receptor.  相似文献   

17.
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.  相似文献   

18.
Both endothelial and erythroid cells are generated in the intermediate cell mass (ICM) during zebrafish embryogenesis, but the nature of the genes that contribute to the processes of erythrocyte maturation and blood vessel network formation is not fully understood. From our in situ-based screening, we have identified a novel factor, Vap (Vascular Associated Protein) that is predominantly expressed in the ICM, and subsequently enriched in endothelial cells. Vap expression in the ICM was drastically suppressed in the cloche mutant that has defects in both vasculogenesis and hematopoiesis, whereas Vap expression was not affected in the vlad tepes/gata1 mutant. Knockdown of Vap using anti-sense morpholinos (VAP-MO) not only resulted in decreased numbers of erythrocytes but also in the strong suppression of hemoglobin production. Further, we found that Vap knockdown caused the disorganization of the intersegmental vessels (ISVs), which show irregular branching. We propose that Vap plays an important role in the maturation of endothelial and erythroid cells in zebrafish.  相似文献   

19.
A reticulocyte translation system was depleted of functional EF-2 by treatment with diphtheria toxin (DT) fragment A and NAD. After dialysis to remove NAD, the system was reconstituted using preparations of EF-2 derived from pyBHK cells. Untreated and reconstituted lysates permitted similar rates of translation. As expected, when DT-treated EF-2 was used to reconstitute the system, no translation occurred. Furthermore EF-2, reacting with the endogenous ADP-ribosyl transferase from pyBHK cells, was also unable to restore protein synthesis in the reconstituted system. These studies suggest that eukaryotic cellular ADP-ribosyl transferases may play a role in regulating protein synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号