首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new metabolite of vitamin D3 has been isolated from the plasma of vitamin D3 treated cows and has been generated from 25(S),26-dihydroxyvitamin D3 with homogenates of vitamin D deficient chick kidney. This metabolite has been identified as 1,25,26-trihydroxyvitamin D3 by comigration with synthetic 1,25(S),26-trihydroxyvitamin D3 in four chromatographic systems, ultraviolet spectroscopy, mass spectrometry, and high-pressure liquid chromatography and mass spectrometry of derivatives. 1,25(S),26-Trihydroxyvitamin D3 is one-tenth as effective as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol 1,25-dihydroxyvitamin D receptor. Either 25(S),26-dihydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 can serve as precursor for in vitro production of 1,25,26-trihydroxyvitamin D3 by chick kidney tissue.  相似文献   

2.
The three murine monoclonal antibodies (MAb), D1G2, D9D10, and D13C8, are specific for human interferon-gamma (IFN-gamma), but not human IFN-alpha and IFN-beta. They react weakly with heat-treated IFN-gamma. The three antibodies recognize different epitopes of the IFN-gamma molecule, as evaluated by antibody-binding inhibition experiments. We have used these three monoclonal antibodies to construct a sandwich enzyme-linked immunosorbent assay (ELISA). The best result was obtained when we used D1G2 or D9D10 MAb as a solid-phase immunosorbent and D1G2 or D9D10 MAb as a tracer. When we measured IFN-gamma in sera by a combination of D1G2 (a solid-phase) and D1G2 (a tracer), a result similar to the one by a combination of D9D10 (a solid-phase) and D1G2 (a tracer), was obtained. This may suggest that human IFN-gamma exists in oligomeric form. Recombinant human IFN-gamma expressed in E. coli is detectable at a concentration of 1 ng/ml in this sandwich ELISA. This assay can be employed for the analysis of the structural characteristics of the human IFN-gamma molecule as well as measurement of IFN-gamma in human sera and tissue culture fluids.  相似文献   

3.
Cytochrome P450scc (CYP11A1) can hydroxylate vitamin D3 to produce 20-hydroxyvitamin D3 and other poorly characterized hydroxylated products. The present study aimed to identify all the products of vitamin D3 metabolism by P450scc, as well as the pathways leading to their formation. Besides 20-hydroxyvitamin D3, other major metabolites of vitamin D3 were a dihydroxyvitamin D3 and a trihydroxyvitamin D3 product. The dihydroxyvitamin D3 was clearly identified as 20,23-dihydroxyvitamin D3 by NMR, in contrast to previous reports that postulated hydroxyl groups in positions 20 and 22. NMR of the trihydroxy product identified it as 17alpha,20,23-trihydroxyvitamin D3. This product could be directly produced by P450scc acting on 20,23-dihydroxyvitamin D3, confirming that hydroxyl groups are present at positions 20 and 23. Three minor products of D3 metabolism by P450scc were identified by MS and by examining their subsequent metabolism by P450scc. These products were 23-hydroxyvitamin D3, 17alpha-hydroxyvitamin D3 and 17alpha,20-dihydroxyvitamin D3 and arise from the three P450scc-catalysed hydroxylations occurring in a different order. We conclude that the major pathway of vitamin D3 metabolism by P450scc is: vitamin D3 --> 20-hydroxyvitamin D3 --> 20,23-dihydroxyvitamin D3 --> 17alpha,20,23-trihydroxyvitamin D3. The major products dissociate from the P450scc active site and accumulate at a concentration well above the P450scc concentration. Our new identification of the major dihydroxyvitamin D3 product as 20,23-dihydroxyvitamin D3, rather than 20,22-dihydroxyvitamin D3, explains why there is no cleavage of the vitamin D3 side chain, unlike the metabolism of cholesterol by P450scc.  相似文献   

4.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

5.
Neurochemical Research - Dopamine is an important neuromodulator in the brain that binds to dopamine D1-like receptors (D1, D5) as well as dopamine D2-like receptors (D2, D3, D4). The D2 receptor...  相似文献   

6.
In this research project, a colloidal solution of silver nanocubes was synthesized and using these nanocubes as building blocks, 2D and 3D ordered structures on solid supports were fabricated to study their optical properties and refractive index sensitivities. The silver nanocubes were synthesized by the polyol reduction process while their 2D and 3D ordered structures were fabricated by Langmuir-Blodgett trough (LB). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the size and shape of the nanostructures as well as the morphologies of 2D and 3D structures. UV-visible absorption spectroscopy was employed to explore their optical properties. Finally, 2D and 3D assemblies of silver nanocubes were employed to investigate their refractive index sensitivity (RIS). The SEM image showed silver nanocubes with nominal edge length of 80 nm. Extinction spectra of 2D and 3D ordered structures are different than those in a colloidal state. Intensity of the plasmon resonance modes is higher for the 3D assembly than that of the 2D assembly. A new band in the low energy region of the spectrum appears for the 3D assembly because of interparticle coupling of the plasmon resonance modes. 3D assembly showed a higher RIS (158.9/ RIU) than of the 2D assembly (150.3/RIU). However, nanocubes are less ordered in 2D substrate than its counterpart 3D. Such 2D and 3D assemblies of silver nanocubes (AgNCs) could be potential candidates for making refractive index-based sensors as well as promising surface-enhanced Raman scattering (SERS) active substrates.  相似文献   

7.
The protease cathepsin D (Cath D) and its proteolytically inactive proform, procathepsin D (ProCath D), turned out to be multifunctional within and outside the cell. Elevated levels of ProCath D occur in malignant tumors and in organs under chronic inflammation. One important source for this increase of ProCath D might be endothelial cells. Here we examined the expression of Cath D in the human endothelial cell line EA.hy 926 and in primary endothelial cells isolated from human umbilical cord veins (HUVEC). After serum-free incubation with or without human interferon-gamma (hIFN-gamma) and/or human tumor necrosis factor-alpha (hTNF-alpha) immature and mature Cath D forms were examined in cell extracts and in cell-conditioned medium concentrates by Western blotting. Lysates of EA.hy 926 cells as well as of HUVEC contained active Cath D as two-chain form, but only negligible amounts of ProCath D and Cath D intermediates. Yet both endothelial cell cultures accumulated ProCath D in their conditioned media in the absence of any stimulus. The treatment with hIFN-gamma and/or hTNF-alpha had little effect on intracellular levels of Cath D, whereas the cytokine stimulation increased the extracellular presence of ProCath D in both endothelial cell cultures. The extracellular increase of ProCath D was not related to induction of apoptosis, as validated by cleaved caspase-3 in cell lysates. Acidification of cytokine-treated media converted ProCath D into Cath D, which was associated with cathepsin-like activity using a fluorogenic substrate-linked assay. We conclude, in vitro, endothelial cells are a cytokine-dependent source for extracellular ProCath D.  相似文献   

8.
Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilids (Diptera: Drosophilidae) were studied from low to high altitudes in central Japan to understand their adaptation to seasonal changes of environmental conditions. Drosophila unipectinata and D. oshimai specialized to flowers, D. suzukii and D. subpulchrella depended almost on fruits, while D. lutescens , D. rufa , D. auraria , D. biauraria and D. sternopleuralis used both of them. It was assumed that D. unipectinata moved from low to high altitudes in June while D. oshimai , D. suzukii and D. subpulchrella in July. Migration of D. unipectinata is considered as a means to avoid summer heat or exploit early-summer resources at high altitudes. On the other hand, D. oshimai , D. suzukii and D. subpulchrella have the capacity to pass the summer at low altitudes, and therefore their migration is assumed as a means to escape from resource-poor conditions in summer at low altitudes or exploit resources at high altitudes. The generalist species, D. lutescens , D. rufa , D. auraria , D. biauraria and D. sternopleuralis , would not perform such extensive movements between low and high altitudes. They may pass the summer at low or mid altitudes depending on accidentally fallen immature fruits and/or some other resources such as decayed leaves.  相似文献   

9.
2D nanostructured materials have shown great application prospects in energy conversion, owing to their unique structural features and fascinating physicochemical properties. Developing efficient approaches for the synthesis of well‐defined 2D nanostructured materials with controllable composition and morphology is critical. The emerging concept, confined synthesis, has been regarded as a promising strategy to design and synthesize novel 2D nanostructured materials. This review mainly summarizes the recent advances in confined synthesis of 2D nanostructured materials by using layered materials as host matrices (also denoted as “nanoreactors”). By virtue of the space‐ and surface‐confinement effects of these layered hosts, various well‐organized 2D nanostructured materials, including 2D metals, 2D metal compounds, 2D carbon materials, 2D polymers, 2D metal‐organic frameworks (MOFs) and covalent‐organic frameworks (COFs), as well as 2D carbon nitrides are successfully synthesized. The wide employment of these 2D materials in electrocatalytic applications (e.g., electrochemical oxygen/hydrogen evolution reactions, small molecule oxidation, and oxygen reduction reaction) is presented and discussed. In the final section, challenges and prospects in 2D confined synthesis from the viewpoint of designing new materials and exploring practical applications are commented, which would push this fast‐evolving field a step further toward greater success in both fundamental studies and ultimate industrialization.  相似文献   

10.
The type 3 deiodinase (D3) inactivates thyroid hormone action by catalyzing tissue-specific inner ring deiodination, predominantly during embryonic development. D3 has gained much attention as a player in the euthyroid sick syndrome, given its robust reactivation during injury and/or illness. Whereas much of the structure biology of the deiodinases is derived from studies with D2, a dimeric endoplasmic reticulum obligatory activating deiodinase, little is known about the holostructure of the plasma membrane resident D3, the deiodinase capable of thyroid hormone inactivation. Here we used fluorescence resonance energy transfer in live cells to demonstrate that D3 exists as homodimer. While D3 homodimerized in its native state, minor heterodimerization was also observed between D3:D1 and D3:D2 in intact cells, the significance of which remains elusive. Incubation with 0.5-1.2 m urea resulted in loss of D3 homodimerization as assessed by bioluminescence resonance energy transfer and a proportional loss of enzyme activity, to a maximum of approximately 50%. Protein modeling using a D2-based scaffold identified potential dimerization surfaces in the transmembrane and globular domains. Truncation of the transmembrane domain (DeltaD3) abrogated dimerization and deiodinase activity except when coexpressed with full-length catalytically inactive deiodinase, thus assembled as DeltaD3:D3 dimer; thus the D3 globular domain also exhibits dimerization surfaces. In conclusion, the inactivating deiodinase D3 exists as homo- or heterodimer in living intact cells, a feature that is critical for their catalytic activities.  相似文献   

11.
Escherichia coli SpoT protein, with 702 amino acid residues, is a bifunctional enzyme catalyzing both guanosine 5'-diphosphate 3'-diphosphate (ppGpp) degradation and its synthesis. First, we investigated how many domains are included in SpoT protein, by limited hydrolysis of the protein with serine proteases, alpha-chymotrypsin, and elastase. Based on the results, we deduced that SpoT protein is composed of two major domains, an N-terminal half domain from Met1 to Phe373 and a C-terminal half domain from Glu374 to Asn702 (C-terminal end). In addition, by a further alpha-chymotrypsin digestion, two cleaved sites were found at Arg196 in the N-terminal half domain (D12) and at Lys475 in the C-terminal half domain (D34), to produce four minor domains, D1, D2, D3, and D4. Next, plasmids expressing the two major domains (D12 and D34) and four minor domains (D1, D2, D3, and D4) were constructed. Consequently, the deduced SpoT minor domains as well as the major domains were expressed as stable protein units, except for D4. D4 may also be folded into a stable protein in E. coli cells, since high expression of D4 from a plasmid results in host cell lethality. E. coli relA -, spoT- double null strains expressing D1, D2, and D12 recovered cell growth in M9 minimal medium, but the transformants of D3, D4, and D34 did not grow in the minimal medium. This indicates that ppGpp synthetic activities could be restricted in the N-terminal half domain (D12, D1, and D2).  相似文献   

12.
Further understanding of its endocrine mechanisms and increased evidence for autocrine/paracrine actions has recently enhanced our knowledge of the biological activities of the vitamin D metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D). The recognition of the contribution of vitamin D depletion to increased risk of osteoporosis, and most importantly the risk of hip fracture in the elderly, has increased the clinical significance of clinical laboratory testing for vitamin D status. Research has revealed that at least three genes contribute to vitamin D activity within tissues. These are the vitamin D receptor as well as two major vitamin D metabolising enzymes, CYP27B1, responsible for synthesis of 1,25(OH)2D and CYP24, responsible for catabolism of vitamin D metabolites. Current research focuses on the contribution of vitamin D metabolism to increasing vitamin D activity. This is of particular interest in bone forming cells where increased 1,25(OH)2D activity has been proposed to contribute to strengthening the skeleton. As well, solid tumours such as prostate, breast and colon cancers are another increasing area of vitamin D research. The major issues for the clinical laboratory in vitamin D testing include defining clinical decision limits for the interpretation of serum 25-hydroxyvitamin D (25OHD) levels and improving the precision and accuracy of this assay.  相似文献   

13.
In the chick retina, the D1 dopaminergic system differentiates very early, as shown by receptor-mediated increases in intracellular cyclic AMP concentration and the presence of [(3)H]SCH23390-specific binding sites. Here, we characterized, by RT-PCR, the expression of defined D1 receptor subtypes D(1A), D(1B), and D(1D) during the development of the chick retina. Total RNA was extracted from retinas of 6-day-old embryos (E6) to 1-day-old hatched chickens and reverse-transcribed. The resulting cDNA was amplified using D(1A)-, D(1B)-, or D(1D)-specific primers, and the PCR-amplified products were analyzed by electrophoresis. The fragment corresponding to D(1A) receptor was detected in developing retina as early as E7, whereas the fragment corresponding to D(1B) was observed starting around E10. No PCR product corresponding to D(1D) was observed in the retina, although it was detected in chick brain. As synaptogenesis in chick retina begins after E11 and [(3)H]SCH 23390 D1 binding sites increase after this stage, the present results show that expression of D(1B) receptor increases during synaptogenesis, whereas D(1A) is the receptor subtype associated with the D1-like actions of dopamine early in retina development.  相似文献   

14.
Streptococcus pneumoniae binds to the ectodomain of the human polymeric Ig receptor (pIgR), also known as secretory component (SC), via a hexapeptide motif in the choline-binding protein SpsA. The SpsA-pIgR interaction mediates adherence and internalization of the human pathogen into epithelial cells. In this study the results of SpsA binding to human, mouse, and chimeric SC strongly supported the human specificity of this unique interaction and suggested that binding sites in the third and fourth Ig-like domain of human SC (D3 and D4, respectively) are involved in SpsA-pIgR complex formation. Binding of SpsA to SC-derived synthetic peptides indicated surface-located potential binding motifs in D3 and D4. Adherence and uptake of pneumococci or SpsA-coated latex beads depended on the SpsA hexapeptide motif as well as SpsA-binding sites in D3 and D4 of human pIgR. The involvement of D3 and D4 in adherence and invasion was demonstrated by the lack of binding of SpsA-coated latex beads to transfected epithelial cells expressing mutated pIgR. Finally, blocking experiments with chimeric human-mouse SC as well as synthetic peptides indicated the participation of D3 and a key role of D4 in pneumococcal invasion.  相似文献   

15.
To study the role of vitamin D to optimise bone architecture, we have developed an animal model to investigate the effects of frank vitamin D-deficiency as well as graded depletion of circulating 25-hydroxyvitamin D(3) (25D) levels on the skeleton. Rats fed on dietary vitamin D levels from 0 to 500 ng/day achieved diet-dependent circulating levels of 25D ranging from 11 to 115 nmol/L. Levels of serum 1,25-dihydroxyvitamin D(3) (1,25D) increased as dietary vitamin D increased between 0 and 200 ng/day at which point a maximum level was achieved and retained with higher vitamin D intakes. The renal levels of 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1) mRNA were highest in animal groups fed on vitamin D between 0 and 300 ng/day. In contrast, renal 25-hydroxyvitamin D 24-hydroxylase (CYP24) mRNA levels increased as dietary vitamin D increased achieving maximum levels in animals receiving 500 ng vitamin D/day. This animal model of vitamin D depletion is suitable to provide invaluable information on the serum levels of 25D and dietary calcium intake necessary for optimal bone structure. Such information is essential for developing nutritional recommendations to reduce the incidence of osteoporotic hip fractures.  相似文献   

16.
Human breast epithelial cells, derived from fibroadenomas, were cultured under conditions promoting growth in two-dimensions (2D) as monolayers using the collagen-coated dishes and in three-dimensions (3D) inside the collagen gel matrix. Both epidermal growth factor (EGF) and cortisol (F) were required for maximal stimulation in 3D growth, but only cortisol was required for 2D growth. The growth stimulation of exogenously added type IV collagen was no greater than that of type I as a substrate in both the 2D and 3D growth. Immunocytochemical staining, using a polyclonal actin antibody, showed homogeneous staining in all cells in 2D monolayers, whereas more restricted distribution was observed in 3D outgrowths in the collagen gel matrix. The same cells, when cultured in 2D vs 3D, elicit different responses and the original phenotypes may be better maintained in 3D.  相似文献   

17.
An unknown vitamin D compound was observed in the HPLC-UV chromatogram of edible mushrooms in the course of analyzing vitamin D(2) as part of a food composition study and confirmed by liquid chromatography-mass spectrometry to be vitamin D(4) (22-dihydroergocalciferol). Vitamin D(4) was quantified by HPLC with UV detection, with vitamin [(3)H] itamin D(3) as an internal standard. White button, crimini, portabella, enoki, shiitake, maitake, oyster, morel, chanterelle, and UV-treated portabella mushrooms were analyzed, as four composites each of a total of 71 samples from U.S. retail suppliers and producers. Vitamin D(4) was present (>0.1 μg/100 g) in a total of 18 composites and in at least one composite of each mushroom type except white button. The level was highest in samples with known UV exposure: vitamin D enhanced portabella, and maitake mushrooms from one supplier (0.2-7.0 and 22.5-35.4 μg/100 g, respectively). Other mushrooms had detectable vitamin D(4) in some but not all samples. In one composite of oyster mushrooms the vitamin D(4) content was more than twice that of D(2) (6.29 vs. 2.59 μg/100 g). Vitamin D(4) exceeded 2 μg/100 g in the morel and chanterelle mushroom samples that contained D(4), but was undetectable in two morel samples. The vitamin D(4) precursor 22,23-dihydroergosterol was found in all composites (4.49-16.5 mg/100 g). Vitamin D(4) should be expected to occur in mushrooms exposed to UV light, such as commercially produced vitamin D enhanced products, wild grown mushrooms or other mushrooms receiving incidental exposure. Because vitamin D(4) coeluted with D(3) in the routine HPLC analysis of vitamin D(2) and an alternate mobile phase was necessary for resolution, researchers analyzing vitamin D(2) in mushrooms and using D(3) as an internal standard should verify that the system will resolve vitamins D(3) and D(4).  相似文献   

18.
Leukocyte immunoglobulin-like receptors (LILRs), also called CD85s, ILTs, or LIRs, are important mediators of immune activation and tolerance that contain tandem immunoglobulin (Ig)-like folds. There are 11 (in addition to two pseudogenes) LILRs in total, two with two Ig-like domains (D1D2) and the remaining nine with four Ig-like domains (D1D2D3D4). Thus far, the structural features of the D1D2 domains of LILR proteins are well defi ned, but no structures for the D3D4 domains have been reported. This is a very important fi eld to be studied as it relates to the unknown functions of the D3D4 domains, as well as their relative orientation to the D1D2 domains on the cell surface. Here, we report the crystal structures of the D3D4 domains of both LILRB1 and LILRB2. The two Iglike domains of both LILRB1-D3D4 and LILRB2-D3D4 are arranged at an acute angle (~60°) to form a bent structure, resembling the structures of natural killer inhibitory receptors. Based on these two D3D4 domain structures and previously reported D1D2/HLA I complex structures, two alternative models of full-length (four Ig-like domains) LILR molecules bound to HLA I are proposed.  相似文献   

19.
The ratio of the lengths of the second and fourth finger (2D∶4D) has been described as reflecting the degree of prenatal androgen exposure in humans. 2D∶4D is smaller for males than females and is associated with traits such as left-handedness, physical aggression, attention-deficit-hyperactivity disorder and a genetic polymorphism of the androgen receptor. All of these traits are known to be correlated to the vulnerability for alcohol dependency. We therefore hypothesized low 2D∶4D in patients with alcohol dependency. In the present study on 131 patients suffering from alcohol dependency and 185 healthy volunteers, we found that alcohol dependent patients had smaller 2D∶4D ratios compared to controls with preserved sexual dimorphism but with reduced right-left differences. The detection of alcohol dependency based on 2D∶4D ratios was most accurate using the right hand of males (ROC-analysis: AUC 0.725, sensitivity 0.667, specificity 0.723). These findings provide novel insights into the role of prenatal androgen exposure in the development of alcohol dependency and for the use of 2D∶4D as a possible trait marker in identifying patients with alcohol dependency.  相似文献   

20.
Summary Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. A minimum recombinant analysis using D13S22, ESD, RB1, D13S31, D13S55, D13S26, D13S39, and D13S12, all localized at 13q14-q22, has been carried out in 20WD families of Northwest-European origin. No inconsistencies have been observed with respect to locus order or location of the WD locus (WND) compared with previous linkage studies. D13S31 was mapped as the closest marker proximal to WND, whereas D13S55 and D13S26 were mapped as the closest markers distal to WND. We have identified a crossover between WND and D13S31 in one family and a crossover between WND and D13S55 in another. These crossover sites can be used as reference points for new chromosome 13q14-q21 markers, and are therefore important for a more accurate mapping of the WD locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号