首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid sphingomyelinase is a water-soluble, lysosomal glycoprotein that catalyzes the degradation of membrane-bound sphingomyelin into phosphorylcholine and ceramide. Sphingomyelin itself is an important component of the extracellular leaflet of various cellular membranes. The aim of the present investigation was to study sphingomyelin hydrolysis as a membrane-bound process. We analyzed the degradation of sphingomyelin by recombinant, highly purified acid sphingomyelinase in a detergent-free, liposomal assay system. In order to mimic the in vivo intralysosomal conditions as closely as possible a number of negatively charged, lysosomally occuring lipids including bis(monoacylglycero)phosphate and phosphatidylinositol were incorporated into substrate-carrying liposomes. Dolichol and its phosphate ester dolicholphosphate were also included in this study. Bis(monoacylglycero)phosphate and phosphatidylinositol were both effective stimulators of sphingomyelin hydrolysis. Dolichol and dolicholphosphate also significantly increased sphingomyelin hydrolysis. The influence of membrane curvature was investigated by incorporating the substrate into small (SUVs) and large unilamellar vesicles (LUVs) with varying mean diameter. Degradation rates were substantially higher in SUVs than in LUVs. Surface plasmon resonance experiments demonstrated that acid sphingomyelinase binds strongly to lipid bilayers. This interaction is significantly enhanced by anionic lipids such as bis(monoacylglycero)phosphate. Under detergent-free conditions only the sphingolipid activator protein SAP-C had a pronounced influence on sphingomyelin degradation in both neutral and negatively charged liposomes, catalyzed by highly purified acid sphingomyelinase, while SAP-A, -B and -D had no noticeable effect on sphingomyelin degradation.  相似文献   

2.

Background

Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity.

Methodology/Principal Findings

We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models.

Conclusions/Significance

These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity.  相似文献   

3.
Sphingolipid activator protein (SAP) deficiency, previously described in two sibs and shown to be caused by the absence of the common saposin precursor (prosaposin), was further characterized by biochemical lipid and enzyme studies and by ultrastructural analysis. The 20 week old fetal sib had increased concentrations of neutral glycolipids, including mono-, di-, tri- and tetrahexosylceramide, in liver, kidney and cultured skin fibroblasts compared with the controls. Glucosylceramide and lactosylceramide were particularly elevated. The kidney of the affected fetus showed additional increases in the concentration of sulphatide, galactosylceramide and digalactosylceramide. Free ceramide was stored in the liver and kidney, and GM3 and GM2 gangliosides were elevated in the liver, but not the brain, of the fetus. Phospholipids, however, were normal in the affected fetus. In the liver biopsy of the propositus, who later died at 16 weeks of age, only a few lipids could be studied. Glucosylceramide, dihexosylceramide and ceramide were elevated in agreement with our previous study. Enzyme studies were undertaken using detergent free liposomal substrate preparations and fibroblast extracts. The sibs' -glucocerebrosidase and -galactocerebrosidase activities were clearly reduced, but their sphingomyelinase activities were normal. The normal activity of the latter enzyme and the almost normal tissue concentration of sphingomyelin in prosaposin deficiency suggest that the prosaposin derived SAPs are not required for sphingomyelinase activity in vivo. In keeping with the biochemical findings, skin biopsies from the sibs showed massive lysosomal storage with a vesicular and membranous ultrastructure. The function of SAPs in sphingolipid degradation and the role of SAPs for enzyme activity in vitro are discussed. In addition, the similarity in neutral glycolipid accumulations in Niemann Pick disease type C and in prosaposin deficiency are noted. The phenotype of the prosaposin deficient sibs resembled acute neuronopathic (type 2) Gaucher disease more than Farber disease in several aspects, but their genotype was unique.This paper is dedicated to Prof. Jürgen Pfeiffer on the occasion of his 70th birthday  相似文献   

4.
The physiological degradation of several membrane-bound glycosphingolipids (GSLs) by water-soluble lysosomal exohydrolases requires the assistance of sphingolipid activator proteins (SAPs). Four of these SAPs are synthesized from a single precursor protein (prosaposin). Inherited deficiency of this precursor results in a rare disease in humans with an accumulation of ceramide (Cer) and glycolipids such as glucosylceramide and lactosylceramide (LacCer). In a previous study, we have shown that human SAP-D stimulates the lysosomal degradation of Cer in precursor deficient cells. In order to study the role of SAPs (or saposins) A-D in cellular GSL catabolism, we recently investigated the catabolism of exogenously added [(3)H]labeled ganglioside GM1, Forssman lipid, and endogenously [(14)C]labeled GSLs in SAP-precursor deficient human fibroblasts after the addition of recombinant SAP-A, -B, -C and -D. We found that activator protein deficient cells are still able to slowly degrade gangliosides GM1 and GM3, Forssman lipid and globotriaosylceramide to a significant extent, while LacCer catabolism critically depends on the presence of SAPs. The addition of either of the SAPs, SAP-A, SAP-B or SAP-C, resulted in an efficient hydrolysis of LacCer.  相似文献   

5.
Functional characterization of the MENTAL domain   总被引:2,自引:0,他引:2  
Human metastatic lymph node (MLN) 64 is composed of two conserved regions. The amino terminus contains a conserved membrane-spanning MENTAL (MLN64 NH(2)-terminal) domain shared with an unique protein called MENTHO (MLN64 NH(2)-terminal domain homologue) and targets the protein to late endosome. The carboxyl-terminal domain is composed of a cholesterol binding steroidogenic acute regulatory-related lipid transfer domain exposed to the cytoplasm. MENTHO overexpression leads to the accumulation of enlarged endosomes. In this study, we show that MLN64 overexpression also induces the formation of enlarged endosomes, an effect that is probably mediated by the MENTAL domain. Using an in vivo photocholesterol binding assay, we find that the MENTAL domain of MLN64 is a cholesterol binding domain. Moreover, glutathione S-transferase pull-down or co-immunoprecipitation experiments demonstrate that this domain mediates homo- and hetero-interaction of MLN64 and MENTHO. In living cells, the expression of paired yellow fluorescent and cyan fluorescent fusion proteins show MENTHO homo-interaction and its interaction with MLN64. These data indicate that within late-endosomal membranes, MLN64 and MENTHO define discrete cholesterol-containing subdomains. The MENTAL domain might serve to maintain cholesterol at the membrane of late endosomes prior to its shuttle to cytoplasmic acceptor(s).  相似文献   

6.
A naturally occurring non-enzymic sphingolipid activator protein (A1a activator) shown previously to be immunochemically not detectable in a new variant of human Gaucher disease (glucosylceramide-lipidosis) without glucosylceramidase deficiency was characterized by partial sequence analysis. The N-terminal amino-acid sequence of the A1a activator--a glycoprotein with high carbohydrate content--could be determined up to position 38. About 20% of the polypeptide chain are shorter by two amino-acid residues at the N-terminal end. Position 22 seems to be occupied by a carbohydrate-binding asparagine. The N-terminus of the A1a activator does not show any homology with the activator for the enzymic sulfatide degradation.  相似文献   

7.
Gaucher spleen sphingolipid activator protein 2 was fractionated into concanavalin A binding- and non-binding fractions. These fractions each contained several bands on non-denaturing polyacrylamide gel electrophoresis (PAGE). The two fractions were further fractionated by electroblotting the proteins from preparative gels onto nitrocellulose, staining with Ponceau S to locate the bands of protein and then eluting the protein components from the nitrocellulose. A total of ten fractions, each containing only one or two major components, was collected. All of these subfractions activated beta-glucocerebrosidase and sphingomyelinase and most subfractions also activated beta-galactocerebrosidase. The structural relationship of the bands was investigated using endoglycosidase digestions. The results indicated that the two bands with the fastest mobility on non-denaturing PAGE did not contain any carbohydrate. The remaining bands showed only limited or partial digestion with endoglycosidase H and endoglycosidase D, but were readily hydrolysed with endoglycosidase F. The products of these digestions included bands with similar mobilities to the non-carbohydrate containing bands.  相似文献   

8.
CcmE is a heme chaperone involved in the periplasmic maturation of c-type cytochromes in many bacteria and plant mitochondria. It binds heme covalently and subsequently transfers it to the apo form of cytochromes c. To examine the role of the C-terminal domain of CcmE in the binding of heme, in vitro heme binding to the apo form of a truncated (immediately before Pro-136) version of the periplasmic domain of the heme chaperone from Escherichia coli was studied. Removal of the C-terminal domain dramatically altered the ligation of non-covalently bound heme in CcmE' (the soluble form lacking the membrane anchor) but only slightly affected its affinity for protoporphyrin IX and 8-anilino-1-naphthalenesulfonate. This finding has significant mechanistic implications for in vivo holo-CcmE formation and indicates that the C-terminal region is not required for the recruitment and docking of heme into its binding site but is likely to contain amino acid(s) involved in heme iron axial coordination. Removal of the C-domain significantly impaired in vivo heme binding to CcmE and conversion of apocytochrome to holoprotein by a similar factor, suggesting that the C-terminal domain of the chaperone is primarily involved in heme binding to CcmE rather than in heme transfer to the apo cytochrome.  相似文献   

9.
A pBR322::Rous sarcoma virus(RSV)-based shuttle vector was used to insert fused genes, composed of the amino-terminal portion of the bacterial chloramphenicol-acetyltransferase gene (cat) and the entire coding region for the C-terminally derived light (L) chain of human tissue-type plasminogen activator (t-PA) cDNA. Cotransfection of rat 3Y1 cells with pRSVneo DNA and pRSVcat/t-PA DNA yielded stably integrated G418-resistant transfectants which contain unrearranged copies of pRSVcat/t-PA DNA. These transfectants synthesize cat/t-PA L-chain mRNA, apparently correctly initiated and terminated. With the help of an enzyme-linked immunosorbent assay (ELISA), it is demonstrated that these cells produce human t-PA antigen. Furthermore, pRSVcat/t-PA L-chain cDNA-containing rat 3Y1 cells synthesize a plasminogen-dependent amidolytic activity which is suppressed by specific anti-human t-PA antibodies. This activity cannot be stimulated by fibrin, a property displayed by native t-PA. It is concluded that the t-PA L-chain cDNA contains the complete genetic information for the plasminogen activator activity.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef downregulates major histocompatibility complex class I (MHC-I) from the cell surface. It has been proposed that the direct interaction of the acidic cluster (AC) of Nef, (62)EEEE(65), with the furin binding region (fbr) of PACS-1 is crucial for this Nef function. Contrary to this proposal, evidence is presented here that the four glutamates in Nef do not functionally engage the PACS-1 fbr. (i) The binding of Nef to the PACS-1 fbr in vitro is much weaker than the binding of the canonical furin AC to the PACS-1 fbr. (ii) The mutation of two of the four glutamates in Nef's AC to alanines does not alter Nef's ability to downregulate MHC-I, and triply mutated Nefs exhibit 50% activity. (iii) The introduction of lysine into the AC has little effect on Nef function. (iv) The mutation of all four glutamates to alanine does debilitate Nef MHC-I downregulation, but this quadruple mutation also impairs the ability of Nef to regulate p21-activated protein kinase and enhance viral particle infectivity. (v) The replacement of the Nef AC with the bona fide AC from furin results in the loss of the expected regulatory properties of the furin AC. (vi) The insertion of the conformation-disrupting amino acid proline into the Nef AC does not disrupt MHC-I downregulation. Our results are consistent with an alternative model in which (62)EEEE(65) plays a stabilizing role in the formation of a ternary complex between Nef, the MHC-I cytoplasmic domain, and AP-1.  相似文献   

11.
Human acid ceramidase was overexpressed in Chinese hamster ovary cells by amplification of the transfected, full-length cDNA. The majority of the overexpressed enzyme was secreted into the culture media and purified to apparent homogeneity. The purified protein contained the same 13-(alpha) and 40 (beta)-kDa subunits as human acid ceramidase from natural sources, had an acidic pH optimum (4.5), and followed normal Michaelis-Menten kinetics using 14C- and BODIPY-labeled C12-ceramide as substrates. Deglycosylation studies showed that the recombinant enzyme contained mostly "high mannose" type oligosaccharides and that two distinct beta-subunits were present. Amino acid sequencing of these subunit polypeptides revealed a single N terminus, suggesting that the approximately 2-4-kDa molecular mass difference was likely due to C-terminal processing. The purified enzyme also catalyzed ceramide synthesis in vitro using 14C-labeled C12 fatty acid and sphingosine as substrates. Surprisingly, we found that media from the overexpressing hamster cells had increased acid sphingomyelinase activity and that this activity could be co-precipitated with acid ceramidase using anti-ceramidase antibodies. Overexpression of acid ceramidase in normal human skin fibroblasts also led to enhanced acid sphingomyelinase secretion, but this was not observed in Niemann-Pick disease cells. RNA studies showed that this increased activity was not due to overexpression of the endogenous acid sphingomyelinase gene. Uptake studies using mouse macrophages revealed rapid internalization of the acid ceramidase activity from the hamster cell media but not acid sphingomyelinase. These studies provide new insights into acid ceramidase and the related lipid hydrolase, acid sphingomyelinase.  相似文献   

12.
Summary SAP-1 is a sphingolipid activator protein found in human tissues required for the enzymatic hydrolysis of GM1 ganglioside and sulfatide. It appears to be missing in patients who have a genetic lipidosis resembling juvenile metachromatic leukodystrophy. Using rabbit antibodies against human SAP-1 it could be visualized in extracts from cultured human skin fibroblasts after sodium dodecylsulfate-polyacrylamide gel electrophoresis, followed by electroblotting to nitrocellulose membrane and immunochemical staining (Western blotting). A series of 23 human-Chinese hamster ovary cell hybrids containing different human chromosomes were examined. The parent Chinese hamster ovary cells did not have a reacting protein in the region of human SAP-1. Only in the eight hybrid clones containing human chromosome 10 was a reacting protein identified. Other chromosomes were excluded by this method. Therefore the gene for SAP-1 and the genetic mutation resulting in a fatal lipidosis are located on human chromosome 10. Present address: Department of Pediatrics, Osaka University Medical School, Fukushima-Ku, Osaka, Japan  相似文献   

13.
The sphingolipid activator protein 1 (SAP-1) increases the rate of hydrolysis of sphingolipids in the lysosome by apparently bringing together the substrate and the corresponding hydrolytic enzyme. This implies specific recognition of both the substrate and enzyme by SAP-1. However, binding domains in SAP-1 and recognition mechanisms involved are unknown. Amino acid sequence comparison of SAP-1 with influenza virus neuraminidase (EC 3.2.1.18, FLU NA) indicates that functional amino acid residues in or near the sialic acid binding site of FLU NA are also found at equivalent positions in the first 48 N-terminal amino acids of SAP-1. This region of homology allows to propose folding of the SAP-1 polypeptide chain by comparison with known crystallographic structure of FLU NA and identify a potential domain for lysosomal enzyme recognition through sialic acid binding. There is also a region of 10 amino acid residues near the C-terminal end of SAP-1 which has a strong propensity to form an alpha-helix with amphiphilic properties of lipid-binding helices. This domain in SAP-1 is probably responsible for the lipid(substrate)-binding function of SAP-1.  相似文献   

14.
Using bioinformatic, proteomic, immunofluorescence, and genetic cross methods, we have functionally characterized a family of putative parasite ligands as potential mediators of cell-cell interactions. We name these proteins the Limulus clotting factor C, Coch-5b2, and Lgl1 (LCCL)-lectin adhesive-like protein (LAP) family. We demonstrate that this family is conserved amongst Plasmodium spp. It possesses a unique arrangement of adhesive protein domains normally associated with extracellular proteins. The proteins are expressed predominantly, though not exclusively, in the mosquito stages of the life cycle. We test the hypothesis that these proteins are surface proteins with 1 member of this gene family, lap1, and provide evidence that it is expressed on the surface of Plasmodium berghei sporozoites. Finally, through genetic crosses of wild-type Pblap1+ and transgenic Pblap1- parasites, we show that the null phenotype previously reported for sporozoite development in a Pblap1- mutant can be rescued within a heterokaryotic oocyst and that infectious Pblap1 sporozoites can be formed. The mutant is not rescued by coparasitization of mosquitoes with a mixture Pblap1+ and Pblap1- homokaryotic oocysts.  相似文献   

15.
Purification to homogeneity of human placental acid sphingomyelinase   总被引:1,自引:0,他引:1  
Acid sphingomyelinase was purified to homogeneity from human placenta in the presence of a dialyzable detergent, n-octyl-beta-D-glucopyranoside. The major steps in the procedure included column chromatographies with Con A-Sepharose, sphingosylphosphorylcholine-Sepharose 4B, hexyl-agarose, and Mono P. The purified enzyme with pI 7.4 had a specific activity of approx 170,000 units/mg protein with a yield of 3.6%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single protein band of Mr 62,000. Gel filtration with a Superose 12 column gave a single peak, and the enzyme in the presence 50 mM n-octyl-beta-D-glucopyranoside was of Mr 123,000, indicating that the native enzyme occurs in a dimeric form. The optimal pH was 5.5 with both sphingomyelin and an artificial substrate, 2-N-hexadecanoylamino-4-nitrophenylphosphorylcholine. The Km values were 55 microM with sphingomyelin and 340 microM with the artificial substrate. The enzyme activity was not affected by Mg2+ (1-5 mM), confirming that the enzyme is acid sphingomyelinase. The enzyme was stable at -80 degrees C for more than 4 months. In addition to the enzyme with pI 7.4, the Mono P chromatofocusing gave two peaks (pI 7.0 and 6.7) possessing the enzymatic activity.  相似文献   

16.
Class A penicillin-binding proteins (A-PBPs) are high-molecular weight membrane-bound bifunctional enzymes that catalyze the penicillin-sensitive transpeptidation and transglycosylation reaction steps involved in peptidoglycan assembling. We have over-expressed and characterized a soluble form of the glycosyltransferase domain of PBP1a (GT-PBP1a*) from the hyperthermophilic bacteria Thermotoga maritima. GT-PBP1a* efficiently catalyses peptidoglycan biosynthesis, as shown using an in vitro biosynthetized dansylated-lipid II substrate and a HPLC-coupled assay, and is specifically inhibited by moenomycin. GT-PBP1a* tends to spontaneously aggregate in detergent-free solution, a feature that supports existence of a secondary site for membrane association, distinct from the N-terminal transmembrane anchoring region. Overall, our preliminary data document the biochemical properties of GT-PBP1a* and should guide further studies aimed at deciphering the structural determinants involved into membrane binding by this class of enzymes.  相似文献   

17.
Saposins are small glycoproteins which are required for sphingolipid hydrolysis by lysosomal hydrolases. Each saposin (A, B, C, and D) stimulates a different enzymatic activity. A new simple HPLC method to determine the levels of saposins A, C, and D in tissue was developed. Tissues were homogenized in 20 vol of water, boiled, and centrifuged. The supernatant was lyophilized and redissolved in 5 ml of water. A 1.5-ml sample of the solution was applied to a reverse-phase HPLC column (C4 column) and eluted with an acetonitrile gradient. Most contaminants eluted from the column prior to the saposins, which were eluted later as a cluster of peaks. This cluster was collected and then analyzed by another HPLC system equipped with an AX-300 anion-exchange column using a NaCl gradient. Saposins D, A, and C eluted from the AX-300 column separately and in that order. Quantitation of the saposins was made by measuring the sizes of each peak. Standard curves made from pure saposins showed that quantification was linear over a range from 1 to 5 micrograms. Saposin B was measured by its stimulation activity on pure human liver GM1 ganglioside beta-galactosidase. Stimulation was linear up to 80 micrograms of saposin B. Application of this method to analysis of human tissues for their saposin content is presented.  相似文献   

18.
Prosaposin is synthesized as a 53-kDa protein, post-translationally modified to a 65-kDa form and further glycosylated to a 70-kDa secretory product. The 65-kDa protein is associated to Golgi membranes and is targeted to lysosomes, where four smaller nonenzymatic saposins implicated in the hydrolysis of sphingolipids are generated by its partial proteolysis. The targeting of the 65-kDa protein to lysosomes is not mediated by the mannose 6-phosphate receptor. The Golgi apparatus appears to accomplish the molecular sorting of the 65-kDa prosaposin by decoding a signal from its amino acid backbone. This investigation deals with the characterization of the sequence involved in this process by deleting the saposin functional domains A, B, C, and D and the highly conserved N and C termini of prosaposin. The truncated cDNAs were subcloned into expression vectors and transfected to COS-7 cells. The destination of the mutated proteins was assessed by immunocytochemistry. Deletion of the C terminus did not interfere with the secretion of prosaposin but abolished its transport to lysosomes. Deletion of saposins and the N-terminal domain did not affect the lysosomal or secretory routing of prosaposin. A chimeric construct of albumin and the C terminus of prosaposin was not directed to lysosomes. However, albumin connected to the C terminus and one or more functional domains of prosaposin reached lysosomes, indicating that the C terminus and at least one saposin domain are required for this process. In summary, we are reporting a novel sequence involved in the targeting of prosaposin to lysosomes.  相似文献   

19.
20.
Fusion of cytotrophoblasts into the multinucleated syncytiotrophoblast layer is essential for the development of a functional placenta. The envelope protein of a human endogenous retrovirus W (HERV-W) family member, syncytin 1, has been shown to mediate placental cell fusion. Recently, the envelope protein of another HERV family member (HERV-FRD), syncytin 2, has been identified and shown to be highly expressed in the placenta. To better understand the biology of syncytin 2, in this study we first investigated syncytin 2 gene expression in normal and preeclamptic placentas and then characterized the functions of syncytin 2. The expression of syncytin 2 gene was decreased in preeclamptic placentas and could be stimulated by the cAMP stimulant forskolin. The endoprotease furin was found to be involved in the posttranslational cleavage of syncytin 1 and 2 polypeptides into surface and transmembrane subunits. In addition, proper association of the subunits of syncytins 1 and 2 is probably required for the functional integrity of each protein, because subunit swapping of syncytins 1 and 2 failed to generate fusogenic chimeras. Finally, we demonstrated that the disulfide bridge-forming CX(2)C and CX(7)C motifs found in syncytins 1 and 2 are essential for their fusogenic activities, because mutations in the CX(2)C motif not only abolished fusogenesis but also functioned as dominant-negative mutants. Our results suggest that syncytin 2 may function as a second fusogenic protein for placental cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号