首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones.  相似文献   

2.
Structure prediction of non-canonical motifs such as mismatches, extra unmatched nucleotides or internal and hairpin loop structures in nucleic acids is of great importance for understanding the function and design of nucleic acid structures. Systematic conformational analysis of such motifs typically involves the generation of many possible combinations of backbone dihedral torsion angles for a given motif and subsequent energy minimization (EM) and evaluation. Such approach is limited due to the number of dihedral angle combinations that grows very rapidly with the size of the motif. Two conformational search approaches have been developed that allow both an effective crossing of barriers during conformational searches and the computational demand grows much less with system size then search methods that explore all combinations of backbone dihedral torsion angles. In the first search protocol single torsion angles are flipped into favorable states using constraint EM and subsequent relaxation without constraints. The approach is repeated in an iterative manner along the backbone of the structural motif until no further energy improvement is obtained. In case of two test systems, a DNA-trinucleotide loop (sequence: GCA) and a RNA tetraloop (sequence: UUCG), the approach successfully identified low energy states close to experiment for two out of five start structures. In the second method randomly selected combinations of up to six backbone torsion angles are simultaneously flipped into preset ranges by a short constraint EM followed by unconstraint EM and acceptance according to a Metropolis acceptance criterion. This combined stochastic/EM search was even more effective than the single torsion flip approach and selected low energy states for the two test cases in between two and four cases out of five start structures.  相似文献   

3.
Following the procedure described in the preceding article, the low energy conformations located for the four dimeric subunits of RNA, ApG, ApU, CpG, and CpU are presented. The A-RNA type and Watson-Crick type helical conformations and a number of different kinds of loop promoting ones were identified as low energy in all the units. The 3E-3E and 3E-2E pucker sequences are found to be more or less equally preferred; the 2E-2E sequence is occasionally preferred, while the 2E-3E is highly prohibited in all the units. A conformation similar to the one observed in the drug-dinucleoside monophosphate complex crystals becomes a low energy case only for the CpG unit. The low energy conformations obtained for the four model units were used to assess the stability of the conformational states of the dinucleotide segments in the four crystal models of the tRNAPhe molecule. Information on the occurrence of the less preferred sugar-pucker sequences in the various loop regions in the tRNAPhe molecule has been obtained. A detailed comparison of the conformational characteristics of DNA and RNA subunits at the dimeric level is presented on the basis of the results.  相似文献   

4.
Abstract

Structure prediction of non-canonical motifs such as mismatches, extra unmatched nucleotides or internal and hairpin loop structures in nucleic acids is of great importance for understanding the function and design of nucleic acid structures. Systematic conformational analysis of such motifs typically involves the generation of many possible combinations of backbone dihedral torsion angles for a given motif and subsequent energy minimization (EM) and evaluation. Such approach is limited due to the number of dihedral angle combinations that grows very rapidly with the size of the motif. Two conformational search approaches have been developed that allow both an effective crossing of barriers during con-formational searches and the computational demand grows much less with system size then search methods that explore all combinations of backbone dihedral torsion angles. In the first search protocol single torsion angles are flipped into favorable states using constraint EM and subsequent relaxation without constraints. The approach is repeated in an iterative manner along the backbone of the structural motif until no further energy improvement is obtained. In case of two test systems, a DNA-trinucleotide loop (sequence: GCA) and a RNA tetraloop (sequence: UUCG), the approach successfully identified low energy states close to experiment for two out of five start structures. In the second method randomly selected combinations of up to six backbone torsion angles are simultaneously flipped into preset ranges by a short constraint EM followed by unconstraint EM and acceptance according to a Metropolis acceptance criterion. This combined stochastic/EM search was even more effective than the single torsion flip approach and selected low energy states for the two test cases in between two and four cases out of five start structures.  相似文献   

5.
Lisi V  Major F 《RNA (New York, N.Y.)》2007,13(9):1537-1545
Despite an increasing number of experimentally determined RNA structures, the gap between the number of structures and that of RNA families is still growing. To overcome this limitation, efficient and reliable RNA modeling methodologies must be developed. In order to reach this goal, here, we show how triloop sequence-structure relationships have been inferred through a systematic analysis of all triloops found in available high-resolution structures. The structural annotation of all triloops allowed us to define discrete states of the triloop's conformational space, and therefore an explicit sequence-to-structure relation. The sequence-structure relationships inferred from this explicit relation are presented in a convenient modeling table that provides a limited set of possible three-dimensional structures given any triloop sequence. The table is indexed by the two nucleotides that form the triloop's flanking base pair, since they are shown to provide the most information about the triloop three-dimensional structures. We also report the observations in the X-ray crystallographic structures of important conformational variations, which we believe might be the result of RNA dynamic.  相似文献   

6.
7.
8.
Protein kinases are key regulatory nodes in cellular networks and their function has been shown to be intimately coupled with their structural flexibility. However, understanding the key structural mechanisms of large conformational transitions remains a difficult task. CDK2 is a crucial regulator of cell cycle. Its activity is finely tuned by Cyclin E/A and the catalytic segment phosphorylation, whereas its deregulation occurs in many types of cancer. ATP competitive inhibitors have failed to be approved for clinical use due to toxicity issues raised by a lack of selectivity. However, in the last few years type III allosteric inhibitors have emerged as an alternative strategy to selectively modulate CDK2 activity. In this study we have investigated the conformational variability of CDK2. A low dimensional conformational landscape of CDK2 was modeled using classical multidimensional scaling on a set of 255 crystal structures. Microsecond-scale plain and accelerated MD simulations were used to populate this landscape by using an out-of-sample extension of multidimensional scaling. CDK2 was simulated in the apo-form and in complex with the allosteric inhibitor 8-anilino-1-napthalenesulfonic acid (ANS). The apo-CDK2 landscape analysis showed a conformational equilibrium between an Src-like inactive conformation and an active-like form. These two states are separated by different metastable states that share hybrid structural features with both forms of the kinase. In contrast, the CDK2/ANS complex landscape is compatible with a conformational selection picture where the binding of ANS in proximity of the αC helix causes a population shift toward the inactive conformation. Interestingly, the new metastable states could enlarge the pool of candidate structures for the development of selective allosteric CDK2 inhibitors. The method here presented should not be limited to the CDK2 case but could be used to systematically unmask similar mechanisms throughout the human kinome.  相似文献   

9.
Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique's versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing.  相似文献   

10.
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.  相似文献   

11.
α-Helical coiled coils (CCs) are ubiquitous tertiary structural domains that are often found in mechanoproteins. CCs have mechanical rigidity and are often involved in force transmission between protein domains. Although crystal structures of CCs are available, information about their conformational flexibility is limited. The role of hydrophobic interactions in determining the CC conformation is not clear. In this work we examined the mechanical responses of typical CCs and constructed a coarse-grained mechanical model to describe the conformation of the protein. The model treats α-helices as elastic rods. Hydrophobic bonds arranged in a repeated pattern determine the CC structure. The model is compared with molecular-dynamics simulations of CCs under force. We also estimate the effective bending and twisting persistence length of the CC. The model allows us to examine unconventional responses of the CC, including significant conformational amplification upon binding of a small molecule. We find that the CC does not behave as a simple elastic rod and shows complex nonlinear responses. These results are significant for understanding the role of CC structures in chemoreceptors, motor proteins, and mechanotransduction in general.  相似文献   

12.
MOTIVATION: There are various cases where the biological function of an RNA molecule involves a reversible change of conformation. paRNAss is a software approach to the prediction of such structural switching in RNA. It is based on three hypotheses about the secondary structure space of a switching RNA molecule that can be evaluated by RNA folding and structure comparison. In the positive case, the predicted structural switching must be verified experimentally. RESULTS: After reviewing the strategy used in paRNAss, we present recent improvements on the algorithmic level of the approach, and the results of an evaluation procedure, comprising 1500 RNA sequences. It could be shown that the paRNAss approach performs well on known examples for conformational switching in RNA. The overall number of positive predictions was small, whereas for human 3' UTRs, representing regulatory important regions, it was substantially higher than for arbitrary natural and random sequences. AVAILABILITY: paRNAss is available as a Web service at http://bibiserv.techfak.uni-bielefeld.de/parnass SUPPLEMENTARY INFORMATION: Detailed information on the analyses summarized in Table 1 can be found at http://bibiserv.techfak.uni-bielefeld.de/parnass/examples.html  相似文献   

13.
Recent technological developments permit us to examine the accessibility of specific atoms on any nucleotide in any large RNA molecule to certain chemical probes. This can provide detailed information about the higher order structure of large RNA molecules, including secondary and tertiary structure, protein-RNA contacts, binding sites for functional ligands and possible biologically significant conformational changes. Here, we summarize recent studies on (i) the conformation of naked 16S rRNA under a variety of ionic conditions, and (ii) the behaviour of 16S rRNA in active and inactive 30S subunits, as defined by Zamir, Elson and their colleagues. The latter study reveals a reciprocal conformational change in the vicinity of the decoding region of 16S rRNA in 30S ribosomal subunits. This conformational change appears to be a rearrangement of tertiary and/or quaternary structure involving several universally conserved nucleotides. No reproducible effects are seen elsewhere in the molecule, suggesting that the active-inactive transition is a result of the observed conformational change.  相似文献   

14.
Although conformational dynamics of RNA molecules are potentially important in microRNA (miRNA) processing, the role of the protein binding partners in facilitating the requisite structural changes is not well understood. In previous work, we and others have demonstrated that nonduplex structural elements and the conformational flexibility they support are necessary for efficient RNA binding and cleavage by the proteins associated with the two major stages of miRNA processing. However, recent studies showed that the protein DGCR8 binds primary miRNA and duplex RNA with similar affinities. Here, we study RNA binding by a small recombinant construct of the DGCR8 protein and the RNA conformation changes that result. This construct, the DGCR8 core, contains two double-stranded RNA-binding domains (dsRBDs) and a C-terminal tail. To assess conformational changes resulting from binding, we applied small-angle x-ray scattering with contrast variation to detect conformational changes of primary-miR-16-1 in complex with the DGCR8 core. This method reports only on the RNA conformation within the complex and suggests that the protein bends the RNA upon binding. Supporting work using smFRET to study the conformation of RNA duplexes bound to the core also shows bending. Together, these studies elucidate the role of DGCR8 in interacting with RNA during the early stages of miRNA processing.  相似文献   

15.
Successful discovery of therapeutic antibodies hinges on the identification of appropriate affinity binders targeting a diversity of molecular epitopes presented by the antigen. Antibody campaigns that yield such broad “epitope coverage” increase the likelihood of identifying candidates with the desired biological functions. Accordingly, epitope binning assays are employed in the early discovery stages to partition antibodies into epitope families or “bins” and prioritize leads for further characterization and optimization. The collaborative program described here, which used hen egg white lysozyme (HEL) as a model antigen, combined 3 key capabilities: 1) access to a diverse panel of antibodies selected from a human in vitro antibody library; 2) application of state-of-the-art high-throughput epitope binning; and 3) analysis and interpretation of the epitope binning data with reference to an exhaustive set of published antibody:HEL co-crystal structures. Binning experiments on a large merged panel of antibodies containing clones from the library and the literature revealed that the inferred epitopes for the library clones overlapped with, and extended beyond, the known structural epitopes. Our analysis revealed that nearly the entire solvent-exposed surface of HEL is antigenic, as has been proposed for protein antigens in general. The data further demonstrated that synthetic antibody repertoires provide as wide epitope coverage as those obtained from animal immunizations. The work highlights molecular insights contributed by increasingly higher-throughput binning methods and their broad utility to guide the discovery of therapeutic antibodies representing a diverse set of functional epitopes.  相似文献   

16.
For any detailed NMR conformational study of a protein-ligand complex it is essential to have specific resonance assignments. We have now assigned the pyrophosphate 31P resonances in spectra of NADPH bound to Lactobacillus casei dihydrofolate reductase (DHFR) by using a combination of 1H-31P-heteronuclear shift-correlation (HETCOR), 1H-31P-heteronuclear multiple-quantum-coherence correlation spectroscopy (HMQC-COSY), 1H-1H COSY, homonuclear Hartmann-Hahn (HOHAHA) and NOE spectroscopy (NOESY) experiments. The nicotinamide pyrophosphate phosphorus, P(n), has been unequivocally assigned to a signal (-14.07 ppm) which shows a large 3JP-O-C-H coupling constant. Such a coupling constant when combined with the appropriate Karplus relationship provides conformational information about the P-O-C-H torsion angle. The torsion angle changes by 65 degrees +/- 10 degrees for the binary complex compared with the value in free NADPH. The observed coupling constants for the binary (DHFR--NADPH) and ternary (DHFR--NADPH--methotrexate) complexes (12.3 and 10.5 +/- 0.6 Hz, respectively) indicate that the pyrophosphate group has a similar conformation in the two complexes.  相似文献   

17.
The signal recognition particle (SRP) RNA is a universally conserved and essential component of the SRP that mediates the co-translational targeting of proteins to the correct cellular membrane. During the targeting reaction, two functional ends in the SRP RNA mediate distinct functions. Whereas the RNA tetraloop facilitates initial assembly of two GTPases between the SRP and SRP receptor, this GTPase complex subsequently relocalizes ∼100 Å to the 5′,3′-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. Here we combined biochemical, single molecule, and NMR studies to investigate the molecular mechanism of this large scale conformational change. We show that two independent sites contribute to the interaction of the GTPase complex with the SRP RNA distal end. Loop E plays a crucial role in the precise positioning of the GTPase complex on these two sites by inducing a defined bend in the RNA helix and thus generating a preorganized recognition surface. GTPase docking can be uncoupled from its subsequent activation, which is mediated by conserved bases in the next internal loop. These results, combined with recent structural work, elucidate how the SRP RNA induces GTPase relocalization and activation at the end of the protein targeting reaction.  相似文献   

18.
Calreticulin plays a central role in vital cell processes such as protein folding, Ca(2+) homeostasis and immunogenicity. Even so, only limited three-dimensional structural information is presently available. We present a series of Small-Angle X-ray Scattering data on human placenta calreticulin. The data from the calreticulin monomer reveal the shape of calreticulin in solution: The previously structurally un-described C-terminal is seen as a globular domain, and the P-domain beta-hairpin extends from the N-domain in a spiral like conformation. In the calreticulin solution dimer, the N-, C-, and P-domains are easily identified, and the P-domain is in an extended conformation connecting to the second calreticulin molecule. The SAXS solution data enables the construction of a medium-resolution model of calreticulin. In the light of the unresolved chaperone mechanism of calreticulin and calnexin, we discuss the functional consequences of the conformational plasticity of the calreticulin P-domain.  相似文献   

19.
G-quadruplex structures can occur throughout the genome, including at telomeres. They are involved in cellular regulation and are potential drug targets. Human telomeric G-quadruplex structures can fold into a number of different conformations and show large conformational diversity. To elucidate the different G-quadruplex conformations and their dynamics, we investigated telomeric G-quadruplex folding using single molecule FRET microscopy in conditions where it was previously believed to yield low structural heterogeneity. We observed four FRET states in Na+ buffers: an unfolded state and three G-quadruplex related states that can interconvert between each other. Several of these states were almost equally populated at low to medium salt concentrations. These observations appear surprising as previous studies reported primarily one G-quadruplex conformation in Na+ buffers. Our results permit, through the analysis of the dynamics of the different observed states, the identification of a more stable G-quadruplex conformation and two transient G-quadruplex states. Importantly these results offer a unique view into G-quadruplex topological heterogeneity and conformational dynamics.  相似文献   

20.
Zika virus has attracted increasing attention because of its potential for causing human neural disorders, including microcephaly in infants and Guillain–Barré syndrome. Its NS3 helicase domain plays critical roles in NTP-dependent RNA unwinding and translocation during viral replication. Our structural analysis revealed a pre-activation state of NS3 helicase in complex with GTPγS, in which the triphosphate adopts a compact conformation in the absence of any divalent metal ions. In contrast, in the presence of a divalent cation, GTPγS adopts an extended conformation, and the Walker A motif undergoes substantial conformational changes. Both features contribute to more extensive interactions between the GTPγS and the enzyme. Thus, this study provides structural evidence on the allosteric modulation of MgNTP2− on the NS3 helicase activity. Furthermore, the compact conformation of inhibitory NTP identified in this study provides precise information for the rational drug design of small molecule inhibitors for the treatment of ZIKV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号