首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We compared the changes in monoamines and their metabolites in the El mouse brain induced by GABA-A and GABA-B receptor agonists. Muscimol was used as a GABA-A receptor agonist, and baclofen as a GABA-B receptor agonist. Muscimol (3 mg/kg) significantly increased the DOPAC level in all parts of the mouse brain and the HVA level in the cortex, striatum, and midbrain. No significant change was observed in the dopamine (DA) level. These findings suggest that muscimol may accelerate both the synthesis and catabolism of DA. Baclofen (20 mg/kg) increased the DA level in the hippocampus and midbrain, and the DOPAC level in the hippocampus. Muscimol increased 5-HIAA levels and decreased 5-HT levels. This result suggests that 5-HT metabolism is accelerated by muscimol. No change in 5-HT or 5-HIAA levels was induced by baclofen. The GABA-A receptor system seems to have a potent effect not only on DA neurons, but on 5-HT neurons. However, the GABA-B receptor system appears to have almost no effect on 5-HT neurons, though it appears to have some effect on DA neurons.  相似文献   

2.
1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas.2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia.3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization.4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons.5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression.6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.  相似文献   

3.
This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague–Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.  相似文献   

4.
张峰  李发曾 《动物学研究》2006,27(6):621-625
为探讨合欢花对慢性应激大鼠生长和脑单胺类神经递质的影响,采用15只大鼠,设置了对照组、应激组和合欢花组3组实验。应激组和合欢花组均接受7天的应激刺激,之后合欢花组再灌胃合欢花10天。实验结束后,取3组大鼠的脑组织,用高效液相色谱法测定高香草酸(HVA)、去甲肾上腺素(NE)、多巴胺(DA)和5-羟色胺(5-HT)的含量。结果表明,应激组大鼠日增重显著低于对照组(P=0.011);而合欢花组大鼠的日增重极显著高于应激组(P=0.002)。应激组大鼠海马、纹状体和前额叶中的HVA含量与对照组相比,虽有升高的趋势,但无显著差异;两组间的NE、DA和5-HT也无显著差异。合欢花组大鼠海马中的HVA、DA含量明显高于应激组,而前额叶中的多巴胺和5-羟色胺,以及纹状体中的5-羟色胺均明显低于应激组。这表明合欢花对慢性应激引起的大鼠生长受抑有缓解作用,对其脑内单胺类神经递质有调节作用。  相似文献   

5.
Serotonin (5-HT) stimulates superoxide release, phosphorylation, of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT. However, specific signal transduction by 5-HT leading to proteins that control entrance into the cell cycle are not well defined in smooth muscle cells. Here, we show by Western blot that 5-HT upregulates c-Fos, an immediate early gene product known to regulate the entrance of quiescent cells into the cell cycle. Northern blots showed that c-fos mRNA is induced by 5-HT in 30 min. This induction is blocked by PD98059, indicating that activation of MAPK is required. 5-HT-induced expression of a 350 bp c-fos promoter in a luciferase reporter is blocked by PD98059 and diphenyliodonium (DPI). The GTPases Rac1 and Ras have been implicated in growth factor-induced generation of ROS. Overexpression of either dominant negative (DN) Rac1 or DN Ras inhibited 5-HT-mediated c-fos promoter activation. 5-HT also induced expression from a truncated c-fos promoter containing an isolated serum response element. This activation was blocked by DPI and PD98059. Overexpression of activated Ras and Rac1 were additive for activation of the serum response element promoter. Regulation of cyclin D1, a protein shown to be regulated by c-fos and required for entry into the cell cycle, is upregulated by 5-HT and is blocked by DPI and PD98059. Nuclear factor-κB, which can also regulate cyclin D1, was not activated. We conclude that 5-HT stimulates c-fos and cyclin D1 expression through a ROS-dependent mechanism that requires Ras, Rac1, and MAPK.  相似文献   

6.
Abstract: The weaver mutant mouse (wv/wv) has an ~70% loss of nigrostriatal dopamine (DA) neurons, but the fractional DA release evoked by amphetamine (but not a high potassium level) has been shown to be greater from striatal slices of the weaver compared with +/+ mice. In the present work we tested the hypothesis that fractional DA release from weaver striatum would be greater when release was mediated by the DA transporter. Serotonin (5-HT)-stimulated fractional DA release was greater from weaver than from +/+ striatum. The release evoked by 5-HT in the presence of 10 µM nomifensine (an antagonist of the DA transporter) was less than in its absence, but the difference between weaver and +/+ striatum remained. In the presence of nomifensine, 1-(m-chlorophenyl)biguanide, classified as a 5-HT3 agonist, also induced a greater fractional release from weaver compared with +/+ striatum. When veratridine was used at a low concentration (1 µM), the fractional evoked release of DA was higher from the weaver in the presence and absence of nomifensine. These findings suggest that the reason for the difference in the responsiveness of the two genotypes to these release-inducing agents is not related to DA transporter function.  相似文献   

7.
Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.  相似文献   

8.
We investigated the neuroendocrine changes involved in the transition from incubating eggs to brooding of the young in turkeys. Numbers of mesotocin (MT; the avian analog of mammalian oxytocin) immunoreactive (ir) neurons were higher in the nucleus paraventricularis magnocellularis (PVN) and nucleus supraopticus, pars ventralis (SOv) of late stage incubating hens compared to the layers. When incubating and laying hens were presented with poults, all incubating hens displayed brooding behavior. c-fos mRNA expression was found in several brain areas in brooding hens. The majority of c-fos mRNA expression by MT-ir neurons was observed in the PVN and SOv while the majority of c-fos mRNA expression in dopaminergic (DAergic) neurons was observed in the ventral part of the nucleus preopticus medialis (POM). Following intracerebroventricular injection of DA or oxytocin (OT) receptor antagonists, hens incubating eggs were introduced to poults. Over 80% of those injected with vehicle or the D1 DA receptor antagonist brooded poults, while over 80% of those receiving the D2 DA receptor antagonist or the OT receptor antagonist failed to brood the poults. The D2 DA/OT antagonist groups also displayed less c-fos mRNA in the dorsal part of POM and the medial part of the bed nucleus of the stria terminalis (BSTM) areas than did the D1 DA/vehicle groups. These data indicate that numerous brain areas are activated when incubating hens initially transition to poult brooding behavior. They also indicate that DAergic, through its D2 receptor, and MTergic systems may play a role in regulating brooding behaviors in birds.  相似文献   

9.
Abstract: Oxygen radicals have been implicated in the neurodegenerative and other neurobiological effects evoked by methamphetamine (MA) in the brain. It has been reported that shortly after a single large subcutaneous dose of MA to the rat, the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) is formed in the cortex and hippocampus. This somewhat controversial finding suggests that MA potentiates formation of the hydroxyl radical (HO?) that oxidizes 5-hydroxytryptamine (5-HT) to 5,6-DHT, which, in turn, mediates the degeneration of serotonergic terminals. A major and more stable product of the in vitro HO?-mediated oxidation of 5-HT is 5-hydroxy-3-ethylamino-2-oxindole (5-HEO). In this investigation, a method based on HPLC with electrochemical detection (HPLC-EC) has been developed that permits measurement of very low levels of 5-HEO in rat brain tissue in the presence of biogenic amine neurotransmitters/metabolites. After intracerebroventricular administration into rat brain, 5-HEO is transformed into a single major, but unknown, metabolite that can be detected by HPLC-EC. One hour after administration of MA (100 mg/kg s.c.) to the rat, massive decrements of 5-HT were observed in all regions of the brain examined (cortex, hippocampus, medulla and pons, midbrain, and striatum). However, 5-HEO, its unidentified metabolite, or 5,6-DHT were not detected as in vivo metabolites of 5-HT. MA administration, in particular to rats pretreated with pargyline, resulted in the formation of low levels of N-acetyl-5-hydroxytryptamine (NAc-5-HT) in all brain regions examined. These results suggest that MA does not potentiate the HO?-mediated oxidation of 5-HT. Furthermore, the rapid MA-induced decrease of 5-HT might not only be related to oxidative deactivation of tryptophan hydroxylase, as demonstrated by other investigators, but also to the inhibition of tetrahydrobiopterin biosynthesis by NAc-5-HT. The massive decrements of 5-HT evoked by MA are accompanied by small or no corresponding increases in 5-hydroxyindole-3-acetic acid (5-HIAA) levels. This is due, in part, to the relatively rapid clearance of 5-HIAA from the brain and monoamine oxidase (MAO) inhibition by MA. However, the loss of 5-HT without corresponding increases in its metabolites point to other mechanisms that might deplete the neurotransmitter, such as oxidation by superoxide radical anion (O2??), a reaction that in vitro does not generate 5-HEO or 5,6-DHT but rather another putative neurotoxin, tryptamine-4,5-dione. One hour after administration, MA evokes large depletions of norepinephrine (NE) throughout the brain but somewhat smaller decrements of dopamine (DA) that are restricted to the nigrostriatal pathway. Furthermore, MA evokes a major shift in the metabolism of both NE and DA from the pathway mediated by MAO to that mediated by catechol-O-methyltransferase. The profound and widespread effects of MA on the noradrenergic system, but more anatomically localized influence on the dopaminergic system, suggests that NE in addition to DA, or unusual metabolites of these neurotransmitters, might play roles in the neurodegenerative effects evoked by this drug.  相似文献   

10.
The purpose of this study was to investigate the effects of Rhodiola rosea extract and depression on the serotonin (5-HT) level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats induced by Chronic Mild Stress (CMS). Seventy male Sprague-Dawley rats were divided into seven groups (10 per group): normal control group, untreated depressive rat model group, negative control group, positive control group, low dosage Rhodiola rosea extract (1.5 g/kg) group, medium dosage Rhodiola rosea extract (3 g/kg) group and high dosage Rhodiola rosea extract (6 g/kg) group. After the depressive rats induced by CMS had received Rhodiola rosea extract for 3 weeks, the 5-HT levels at cerebral hippocampus were detected by high performance liquid chromatography. Bromodeoxyuridine (BrdU) was injected in vivo to label the proliferating cells at hippocampus, and morphometry was used to count the hippocampal neurons. The results showed that the 5-HT level of the three experimental groups had recovered to normal status. The immunohistochemistry of hippocampus BrdU positive cells had returned to the normal level in the group of depressive rats with low dosage Rhodiola rosea extract. In conclusion the results demonstrated that Rhodiola rosea extract could improve 5-HT level in hippocampus in depressive rats, and low dosage Rhodiola rosea could induce neural stem cell proliferation at hippocampus to return to normal level, repairing the injured neurons at hippocampus.  相似文献   

11.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

12.
Spontaneously hypertensive rats (SHR) were administered either 2.4 g/kg ethanol or an isocaloric glucose daily for 4 weeks and the levels of norepinephrine (NE), epinephrine (EP), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in different brain regions were determined. Results indicated a 3-fold increase in NE level in brain stem and hypothalamus and more than 2-fold increase in DA in corpus striatum in alcohol-treated rats as compared to controls. There was a significant increase in the level of DA in the corpus striatum but the levels in cerebral cortex, brain stem and hippocampus were decreased instead. Decreases in 5-HT levels were found in hypothalamus, brain stem, cortex and cerebellum of alcohol-treated brain as compared to untreated controls. These results indicate alterations of the biogenic amine contents in different regions of the SHR brain after chronic ethanol ingestion. Since stimulated release of biogenic amines in the SHR brain has been implicated in the regulation of blood pressure, changes due to ethanol ingestion may be a risk factor in hypertensive patients.  相似文献   

13.
Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.  相似文献   

14.
We have shown in our laboratory that cat's and rat's sleep disturbances are produced by 24 h of ozone (O3) exposure, indicating that the central nervous system is affected by this gas. To demonstrate the probable changes in brain neurotransmitters, we evaluated the monoamine contents of the midbrain and striatum of rats exposed to 1 part per million O3 for 1 or 3 hours periods. The results were compared with rats exposed to fresh air and to those exposed to 3 hours of O3 followed by 1 or 3 hours of fresh air. We found a significant increase in dopamine (DA) and its metabolites noradrenaline (NA) and 3,4 dihydroxyphenylacetic acid (DOPAC), as well as an increase in the 5-hydroxyindolacetic acid (5-HIAA) contents of the striatum. There were no changes in homovanillic acid (HVA) and serotonin (5-HT) levels during O3 exposure. Additionally, an increase in DA, NA and 5-HIAA in the midbrain during O3 exposure was observed. Turnover analysis revealed that DA increased more than its metabolites in both the midbrain and striatum. However, the metabolite of 5-HT, i.e. 5-HIAA, increased more than its precursor, this reaching statistical significance only in the midbrain. These findings demonstrate that O3 or its reaction products affect the metabolism of major neurotransmitter systems as rapidly as after 1 h of exposition.  相似文献   

15.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

16.
Changes in serotonin (5-HT) and 5-hydroxy indole acetic acid (5-HIAA), its major metabolite, in cerebral cortex, corpus striatum and hippocampus were investigated at 10th and 21st days of chronic ethanol ingestion in Wistar rats. Ethanol (7.2% v/v) was given to rats in a modified liquid diet. Biochemical analysis was performed in two groups of ethanol-treated and control rats (n = 6 for each group). Rats in each group were decapitated at the 10th and 21st days of ethanol consumption. Brains were removed and cerebral cortex, corpus striatum and hippocampus were dissected. 5-HT and 5-HIAA levels were measured in respective brain regions by using high performance liquid chromatography. In cerebral cortex and corpus striatum, 5-HT levels were significantly lower than control at the 10th day of ethanol consumption. At the 21st day, the levels tended to remain low, but not significantly different statistically. In hippocampus, 5-HIAA levels were significantly higher than control at 10th day of ethanol consumption. Increased 5-HIAA level returned to control values at the 21st day of ethanol consumption. Our results suggest that, 5-HT clearly seems to play a critical role in the brain at the 10th day of chronic ethanol consumption.  相似文献   

17.
We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D1 receptor was also examined during AS and CUS using A 68930, a D1 selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days). AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation radioligand binding assays revealed a significant decrease in the number of D1-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D1-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D2-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical and behavioral effects of D1 agonist pretreatment suggest specific modulatory role of D1 receptor under such stressful episodes.  相似文献   

18.
Latent inhibition (LI) is a behavioral phenomenon, in which repeated presenting of a non-reinforced stimulus retards conditioning to this stimulus when it is coupled with a reinforcer. In order to find specific serotonin (5-HT- and dopamine (DA) changes mediating the LI, the 5-HT and DA metabolism was investigated in certain brain regions. Oxidative deamination of 5-HT and DA by monoamine oxidase (MAO) was determined in the prefrontal cortex, striatim, amygdala, and hippocampus at preexposure and testing stages of the LI using the passive avoidance procedure in rats. Preexposed animals demonstrated high MAO activity for 5-HT deamination in the amygdala and striatum and lower MAO activity for DA deamination in the amygdala and hippocampus. After testing the LI, a high level of 5-HT deamination by MAO was revealed in the amygdala, white the lower level of 5-HT deamination by MAO was shown in the prefrontal cortex. At the same time, no changes in DA metabolism were found in all the brain regions studied. Thus, the role of dopaminergic system in the LI effect may be limited by the preexposure stage. The obtained evidence suggests that the enhanced 5-HT activity in the amygdala and striatum induced by the preexposed stimulus is a principal biochemical mechanism underlying the LI.  相似文献   

19.
The acute and long-term effects of the local perfusion of 3,4-methylenedioxymethamphetamine (MDMA) and the interaction with the mitochondrial inhibitor malonate (MAL) were examined in the rat striatum. MDMA, MAL or the combination of MAL with MDMA was reverse dialyzed into the striatum for 8 h via a microdialysis probe while extracellular dopamine (DA) and serotonin (5-HT) were measured. One week later, tissue immediately surrounding the probe was assayed for DA and 5-HT tissue content. Local perfusion of MDMA increased DA and 5-HT release but did not produce long-term depletion of DA or 5-HT in tissue. Malonate also increased both DA and 5-HT release but, in contrast to MDMA, produced only long-term depletion of DA. The combined perfusion of MDMA/MAL synergistically increased the release of DA and 5-HT and produced long-term depletion of both DA and 5-HT in tissue. These results support the conclusion that DA, compared with 5-HT, neurons are more susceptible to mitochondrial inhibition. Moreover, MDMA, which does not normally produce DA depletion in the rat, exacerbated MAL-induced DA depletions. The effect of MDMA in combination with MAL to produce 5-HT depletion suggests a role for bio-energetic stress in MDMA-induced toxicity to 5-HT neurons. Overall, these results highlight the importance of energy balance to the function of DA and 5-HT neurons and to the toxic effects of MDMA.  相似文献   

20.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号