首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   

2.
Appropriate application of techniques for detection andmonitoring of microbiologically influenced corrosion isessential for understanding the mechanistic nature of theinteractions and for obtaining control methods. This paperreviews techniques and methods applied tomicrobiologically influenced corrosion in recent years.The techniques presented in this paper includeelectrochemical noise measurement, concentric electrodes,scanning vibrating electrode mapping, electrochemicalimpedance spectroscopy, atomic force microscopy,confocal laser microscopy, Fourier transform infraredspectroscopy, x-ray photoelectron spectroscopy, Augerelectron spectroscopy, extended x-ray absorption finestructure and utilization of piezoelectric materials. Thesetechniques are reviewed regarding the heterogeneouscharacteristics of microbial consortia and their possibleinfluences on metal substrata. We hope this review willmotivate application and combination of new techniquesfor practical detection and on-line monitoring of theimpact of biofilms on engineering alloys.  相似文献   

3.
Synthetic iron oxides (goethite, -FeO·OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically.  相似文献   

4.
The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.  相似文献   

5.
In this article we describe a field study of biofouling and microbiologically influenced corrosion (MIC) of admiralty brass heat exchanger tubes in contact with running fresh water on the river Tagus close to Almaraz nuclear power plant in Spain. Dezincification originated by biofouling and MIC was studied using impedance, polarization resistance, gravimetric, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. Close correlation was observed between the biofilms formed and the corrosion process (dezincification) using the different experimental techniques. Impedance data showed a capacitive behavior including two time constants. Kramers-Kronig (KK) transforms were used to validate impedance data. The admiralty tubes' impedance data satisfied the KK relations.  相似文献   

6.
In the current study, ferritic stainless grades AISI 439 and AISI 444 were investigated as possible construction materials for machinery and equipment in the cane-sugar industry. Their performance in corrosive cane-sugar juice environment was compared with the presently used low carbon steel AISI 1010 and austenitic stainless steel AISI 304. The Tafel plot electrochemical technique was used to evaluate general corrosion performance. Microbiologically influenced corrosion (MIC) behaviour in sugarcane juice environment was studied. Four microbial colonies were isolated from the biofilms on the metal coupon surfaces on the basis of their different morphology. These were characterized as Brevibacillus parabrevis, Bacillus azotoformans, Paenibacillus lautus and Micrococcus sp. The results of SEM micrographs showed that AISI 439 and AISI 304 grades had suffered maximum localized corrosion. MIC investigations revealed that AISI 444 steel had the best corrosion resistance among the tested materials. However from the Tafel plots it was evident that AISI 1010 had the least corrosion resistance and AISI 439 the best corrosion resistance.  相似文献   

7.
A manganese oxidizing bacterium was isolated from the surface of steel scraps and biochemical tests and 16S rRNA sequencing analysis confirmed the isolate as Bacillus flexus. Potentiodynamic polarization curves showed ennoblement of open circuit potential, increased passive current, a lowering of breakdown potential, active re-passivation potential and enhanced cathodic current in the presence of B. flexus. Adhesion studies with B. flexus on SS304 specimens with different surface treatments demonstrated decreased adhesion on passivated and FeCl3 treated specimens due to the removal of MnS inclusions. The present study provides evidence that surface treatment of stainless steels can reduce adhesion of this manganese oxidizing bacterium and decrease the probability of microbiologically influenced corrosion.  相似文献   

8.
A manganese oxidizing bacterium was isolated from the surface of steel scraps and biochemical tests and 16S rRNA sequencing analysis confirmed the isolate as Bacillus flexus. Potentiodynamic polarization curves showed ennoblement of open circuit potential, increased passive current, a lowering of breakdown potential, active re-passivation potential and enhanced cathodic current in the presence of B. flexus. Adhesion studies with B. flexus on SS304 specimens with different surface treatments demonstrated decreased adhesion on passivated and FeCl(3) treated specimens due to the removal of MnS inclusions. The present study provides evidence that surface treatment of stainless steels can reduce adhesion of this manganese oxidizing bacterium and decrease the probability of microbiologically influenced corrosion.  相似文献   

9.
Little B  Lee J  Ray R 《Biofouling》2007,23(1-2):87-97
Two approaches to control microbiologically influenced corrosion (MIC) have been developed that do not require the use of biocides. These strategies include the following: i) use of biofilms to inhibit or prevent corrosion, and ii) manipulation (removal or addition) of an electron acceptor, (e.g. oxygen, sulphate or nitrate) to influence the microbial population. In both approaches the composition of the microbial community is affected by small perturbations in the environment (e.g. temperature, nutrient concentration and flow) and the response of microorganisms cannot be predicted with certainty. The following sections will review the literature on the effectiveness of these environmentally friendly, "green," strategies for controlling MIC.  相似文献   

10.
Microbiologically influenced corrosion is a serious type of corrosion as approximately 20% of the total economic losses. Sulfate reducing bacteria and Iron oxidizing bacteria are one of the typical representatives of the anaerobic and aerobic bacteria, which are ubiquitous in natural environments and corrode steel structures. Cathodic polarization has been recognized as an effective method for preventing steels from microbial corrosion. Although cathodic polarization method has been widely studied, the specific properties of cathodic current that influences the bacterial removal and inactivation remained largely unclear. This review is to show the main effects of Sulfate reducing bacteria and Iron oxidizing bacteria on metal decay as well as the inhibition mechanism of cathodic polarization in the study of bio-corrosion.  相似文献   

11.
The unpredictability of microbial growth and subsequent localized corrosion of steel can cause significant cost for the oil and gas industry, due to production downtime, repair, and replacement. Despite a long tradition of academic research and industrial experience, microbial corrosion is not yet fully understood and thus not effectively controlled. In particular, biomarkers suitable for diagnosing microbial corrosion which abstain from the detection of the classic signatures of sulfate-reducing bacteria are urgently required. In this study, a natural microbial community was enriched anaerobically with carbon steel coupons and in the presence of a variety of physical and chemical conditions. With the characterization of the microbiome and of its functional properties inferred through predictive metagenomics, a series of proteins were identified as biomarkers in the water phase that could be correlated directly to corrosion. This study provides an opportunity for the further development of a protein-based biomarker approach for effective and reliable microbial corrosion detection and monitoring in the field.  相似文献   

12.
A number of recently developed techniques which may be used for rapid quantification of total microbial activity or of specific microorganisms involved in corrosion are reviewed. These include viable counts using dip slides, microscope methods (epifluorescence), analysis of cell components (ATP, ergosterol, phospholipids), immunological methods (fluorescent antibody staining, ELISA), activity measurements (respiration, esterases, sulphate reduction) and the use of gene probes. The methods are discussed with reference to their simplicity, sensitivity, economics and applications.  相似文献   

13.
Numerous spills and leakages involving petroleum and its derivatives have recently occurred in Brazilian rivers. Considering the lack of information regarding the genotoxic response of neotropical fish to these events and the predominance of information regarding saltwater fish, which offers no genuine comparisons, the present work aimed to evaluate the genotoxicity and mutagenicity of the diesel water soluble fraction (DWSF) on the neotropical fish Prochilodus lineatus under acute (6, 24 and 96h) and subchronic (15 days) exposures, using the comet (SCGE) and micronucleus assays. The results indicated genotoxic and mutagenic damage in erythrocytes of P. lineatus exposed to DWSF. Comet scores for fish exposed to DWSF in all experimental periods were significantly higher than the respective negative control groups (fish exposed to clean water for the same period). The relative frequencies of micronucleated erythrocytes for P. lineatus exposed to DWSF under acute and subchronic treatment were also significantly higher than their respective negative controls. Taken together these results showed that acute and subchronic exposures to DWSF produce mutagenic and genotoxic effects on the blood cells of P. lineatus and that the combination of comet and micronucleus assays proved to be both suitable and useful in the evaluation of the genotoxicity of diesel oil due to their complementary action.  相似文献   

14.
Summary Crude oil stream from the Pembina fields of North Central Alberta, Canada, contained a relatively high detectable load of bacteria. The oil and produced water contained aerobic and anerobic microorganisms capable of producing sulphides from sulphates and sulphite, and ferrous ions from ferric compounds. The ability to produce S2- and Fe(II) in solution is considered very important in corrosion phenomenon in the pipeline system.Apart from SO 4 2- — reducers (Desulfovibrio spp) the organisms found in the crude oil system and capable of generating corrosive environment were mainly members of the Genus Pseudomonas.  相似文献   

15.
The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.  相似文献   

16.
Laboratory scale batch studies were performed to test the diesel oil biodegradation ability of ES1 cultures isolated from Arabian Sea sediments obtained from the vicinity of an oil field. This culture could utilize diesel as the sole source of carbon and energy. Under aerobic conditions, 39% loss of diesel oil was observed over 8 days where 80% of the loss was due to aliphatic constituents. Under anoxic nitrate reducing conditions the rate and extent of degradation was significantly lower, i.e., 18% over 50 days. Salt acclimatized cultures could tolerate salinities up to 3.5% and demonstrated optimal performance at a salinity of 0.5%. The optimum N/P ratio for these cultures was found to be in the range of 2:1-5:1. Addition of two trace elemental substance formulations exhibited a significant inhibitory effect on culture growth. This culture has good potential for decontamination of oil-contaminated marine and subsurface environments.  相似文献   

17.
The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3?months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p?<?0.01 and p?<?0.01).  相似文献   

18.
Reviews in Environmental Science and Bio/Technology - Disposal of waste plastic accumulated in landfills is critical from the environmental perspective. The energy embodied in waste plastic could...  相似文献   

19.
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular diovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N′-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2wk starting 2wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparation, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities.  相似文献   

20.
Cyclooxygenase and lipoxygenase metabolism of arachidonic acid produces compounds important in cardiovascular control. Further, arachidonic acid can be metabolised by cytochrome p450 to produce epoxyeicosatrienoic acids (EETs). These derivatives are inactivated by soluble epoxide hydrolase (sEH). The potential role of these EETs in hypertension and cardiac remodelling has been determined using the selective sEH inhibitor, N-adamantyl-N'-dodecylurea (ADU), in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Experiments were performed on male Wistar rats following uninephrectomy alone (UNX rats) or uninephrectomy with administration of DOCA (25 mg every fourth day subcutaneously) and 1% NaCl in drinking water (DOCA-salt rats). ADU (10 mg/kg/d subcutaneously) was administered for 2 wk starting 2 wk after surgery. Cardiovascular structure and function were determined using organ wet weights, histological analysis of collagen and inflammation, isolated heart and thoracic aortic ring preparations, and electrophysiological measurements. DOCA-salt hypertensive rats developed hypertension, hypertrophy, perivascular and interstitial fibrosis, endothelial dysfunction, and prolongation of the cardiac action potential duration within 4 wk. Administration of ADU prevented the further increase in systolic blood pressure and left-ventricular wet weight and normalized endothelial function. ADU treatment did not change inflammatory cell infiltration, collagen deposition, or cardiac action potential duration. EETs may be involved in the development of hypertension and endothelial dysfunction in DOCA-salt rats, but not in excessive collagen deposition or electrophysiological abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号