首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the RNase superfamily participate in a diverse array of biological processes, including RNA degradation, antipathogen activities, angiogenesis, and digestion. In the present study, we cloned the rat RNase9 gene by in silico methods and genome walking based on homology to the Macaca mulatta (rhesus monkey) epididymal RNase9. The gene is located on chromosome 15p14, spanning two exons, and is clustered with other members of the RNase A superfamily. It contains 1279 bp and encodes 182 amino acids, including a 24-amino acid signal peptide, and it has unique features known from other RNases. Unlike those other members, the rat RNase9 mRNA was specifically expressed in the epididymis, especially in the caput and corpus, and exhibited an androgen-dependent expression pattern but was downregulated in an epididymitis animal model. The RNASE9 was expressed in a principal cell-specific pattern. Interestingly, most of the principal cells in the caput expressed the RNASE9; however, in the distal caput, the principal cells showed a checkerboard-like pattern of immunoreactivity. We also observed that the RNASE9 was bound on the acrosomal domain of sperm. Its potential roles in sperm maturation are discussed.  相似文献   

2.
Cho S  Beintema JJ  Zhang J 《Genomics》2005,85(2):208-220
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.  相似文献   

3.
The mammalian secreted ribonucleases (RNases) comprise a large family of structurally related proteins displaying considerable sequence variation, and have been used in evolutionary studies. RNase 1 (RNase A) has been assumed to play a role in digestion, while other members have been suggested to contribute to host defence. Using the recently assembled bovine genome sequence, we characterised the complete repertoire of genes present in the RNaseA family locus in cattle, and compared this with the equivalent locus in the human and mouse genomes. Several additions and corrections to the earlier analysis of the RNase locus in the mouse genome are presented. The bovine locus encodes 19 RNases, of which only six have unambiguous equivalent genes in the other two species. Chromosomal mapping and phylogenetic analysis indicate that a number of distinct gene duplication events have occurred in the cattle lineage since divergence from the human and mouse lineages. Substitution analysis suggests that some of these duplicated genes are under evolutionary pressure for purifying selection and may therefore be important to the physiology of cattle. Expression analysis revealed that individual RNases have a wide pattern of expression, including diverse mucosal epithelia and immune-related cells and tissues. These data clarify the full repertoire of bovine RNases and their relationships to those in humans and mice. They also suggest that RNase gene duplication within the bovine lineage accompanied by altered tissue-specific expression has contributed a survival advantage.  相似文献   

4.
Within the superfamily of homologous mammalian ribonucleases (RNases) 4 distinct families can be recognized. Previously, representative members of three of these have been cloned and studied in detail. Here we report on the cloning of a cDNA encoding a member of the fourth family, RNase PL3 from porcine liver. The deduced amino acid sequence showed the presence of a signal peptide, confirming the notion that RNase PL3 is a secreted RNase. Expression of the cDNA in Escherichia coli yielded 1.5 mg of purified protein/liter of culture. The recombinant enzyme was indistinguishable from the enzyme isolated from porcine liver based on the following criteria: amino acid analysis, N-terminal amino acid sequence, molecular weight, specific activity toward yeast RNA, and kinetic parameters for the hydrolysis of uridylyl(3',5')adenosine and cytidylyl(3',5')adenosine. Interestingly, the kinetic data showed that RNase PL3 has a very low activity toward yeast RNA, i.e., 2.5% compared to pancreatic RNase A. Moreover, using the dinucleotide substrates and homopolymers it was found that RNase PL3, in contrast to most members of the RNase superfamily, strongly prefers uridine over cytidine on the 5' side of the scissile bond. Replacement, by site-directed mutagenesis, of residues 36-42 of RNase PL3 by the corresponding ones from bovine pancreatic RNase A resulted in a large preferential increase in the catalytic efficiency for cytidine-containing substrates. This suggests that this region of the molecule contains some of the elements that determine substrate specificity.  相似文献   

5.
The RNase gene superfamily combines functionally divergent proteins which share statistically significant sequence similarity. Known members assigned to this family include secretory and nonsecretory RNases; angiogenin; eosinophil cationic protein; eosinophil-derived neurotoxin; sialic-acid binding lectin and anti-tumor protein P-30. We report the cDNA cloning of the chicken RNase Super Family Related (RSFR) gene that is specifically overexpressed in normal bone marrow cells and bone marrow-derived AMV transformed monoblasts. It codes for a 139 amino acid protein with a putative signal peptide and remarkable conservation of active-site residues, other residues known to be important for substrate binding and catalytic activity and half-cystine residues common for all RNase family members. Phylogenetic tree analysis shows that RSFR defines a new group of genes within the family. We also conclude that an amino acid sequence block CKXXNTF(X) 11C is a "shortest RNase superfamily signature" which is both necessary and sufficient to identify all previously recognized family members as well as chicken RSFR.  相似文献   

6.
We report the identification and characterization of the gene encoding the eighth and final human ribonuclease (RNase) of the highly diversified RNase A superfamily. The RNase 8 gene is linked to seven other RNase A superfamily genes on chromosome 14. It is expressed prominently in the placenta, but is not detected in any other tissues examined. Phylogenetic analysis suggests that RNase 7 is the closest relative of RNase 8 and that the pair likely resulted from a recent gene duplication event in primates. Further analysis reveals that the RNase 8 gene has incorporated non-silent mutations at an elevated rate (1.3 × 10–9 substitutions/site/year) and that orthologous RNase 8 genes from 6 of 10 primate species examined have been deactivated by frameshifting deletions or point mutations at crucial structural or catalytic residues. The ribonucleolytic activity of recombinant human RNase 8 is among the lowest of members of this superfamily and it exhibits neither antiviral nor antibacterial activities characteristic of some other RNase A ribonucleases. The rapid evolution, species-limited deactivation and tissue-specific expression of RNase 8 suggest a unique physiological function and reiterates the evolutionary plasticity of the RNase A superfamily.  相似文献   

7.
Pizzo E  D'Alessio G 《Gene》2007,406(1-2):8-12
In 1938 the new word "ribonuclease" was coined to name an enzyme capable of degrading RNA, before the name "ribonucleic acid" was accepted, as at that time RNA was still labeled YNA, for Yeast Nucleic Acid. Later, four Nobel prizes were awarded to investigators working with the "ribonuclease", RNase A from bovine pancreas. Their work greatly advanced our knowledge of protein chemistry and biology, by producing the first complete amino acid composition and the first covalent structure of a protein, the first complete synthesis of an enzyme, and the discovery that the three-dimensional structure of a protein is dictated by its amino acid sequence. Today, well over 100 homologs of RNase A have been identified in all tetrapods, and recently in fishes. Based on the latter findings, a vertebrate RNase superfamily has been appropriately defined, with RNase A as its prototype. Thus, the success of the RNase structure and function not only in promoting the advance of biosciences, but also in evolution, has become clear. Several RNases from the superfamily are endowed with non-catalytic "special" bioactions. Among these are angiogenins, characterized by their ability to stimulate the formation of blood vessels. Recently, four RNases have been identified in Danio rerio, or zebrafish, produced as recombinant proteins, and characterized. As two of them have angiogenic activity, the hypothesis is made that the whole superfamily of vertebrate RNases evolved from early angiogenic RNases. Given the microbicidal activity of some mammalian angiogenins, and of the reported fish angiogenins, the alternative hypothesis is also discussed, that the ancestral RNases were host-defense RNases.  相似文献   

8.
Filippov V  Solovyev V  Filippova M  Gill SS 《Gene》2000,245(1):213-221
The RNase III family of double-stranded RNA-specific endonucleases is characterized by the presence of a highly conserved 9 amino acid stretch in their catalytic center known as the RNase III signature motif. We isolated the drosha gene, a new member of this family in Drosophila melanogaster. Characterization of this gene revealed the presence of two RNase III signature motifs in its sequence that may indicate that it is capable of forming an active catalytic center as a monomer. The drosha protein also contains an 825 amino acid N-terminus with an unknown function. A search for the known homologues of the drosha protein revealed that it has a similarity to two adjacent annotated genes identified during C. elegans genome sequencing. Analysis of the genomic region of these genes by the Fgenesh program and sequencing of the EST cDNA clone derived from it revealed that this region encodes only one gene. This newly identified gene in nematode genome shares a high similarity to Drosophila drosha throughout its entire protein sequence. A potential drosha homologue is also found among the deposited human cDNA sequences. A comparison of these drosha proteins to other members of the RNase III family indicates that they form a new group of proteins within this family.  相似文献   

9.
 Many flowering plants contain stylar S-RNases that are involved in self-incompatibility and S-like RNases of which the biological function is uncertain. This paper reports the deduced amino acid sequence of an S-like RNase gene (PD1) from the self-incompatible plant Prunus dulcis (almond). The amino acid sequence of PD1, which was derived from cDNA and genomic DNA clones, showed 34–86% identity to acidic plant S-like RNases reported so far, with the highest degree of similarity being to an S-like RNase from Japanese pear (Pyrus pyrifolia). Based on RNA hybridisation experiments it appears that, like for many other S-like RNases, the expression of PD1 is not pistil-specific. Analysis of the genomic structure revealed the presence of three introns, of which one is similar in location to that of the related S-RNase gene from Solanaceae and Rosaceae. At least four bands hybridising to PD1 were found upon Southern hybridisation, suggesting the presence of a multigene family of S-like RNase genes in almond. The putative biological function of PD1 is discussed. Received: 22 November 1999 / Revision received: 18 February 2000 · Accepted: 13 March 2000  相似文献   

10.
Understanding the evolutionary origin of the ribonuclease (RNase) A superfamily is of great interest because the superfamily is the sole vertebrate-specific enzyme family known to date. Although mammalian RNases have a diverse array of biochemical and physiological functions, the original function of the superfamily at its birth is enigmatic. Such information may be obtained by studying basal lineages of the vertebrate phylogeny and is necessary for discerning how and why this superfamily originated. Here, we clone and characterize 3 RNase genes from the zebrafish, the most basal vertebrate examined for RNases. We report 1) that all the 3 zebrafish RNases are ribonucleolytically active, with one of them having an RNase activity comparable to that of bovine RNase A, the prototype of the superfamily; 2) that 2 zebrafish RNases have prominent expressions in adult liver and gut, whereas the 3rd is expressed in adult eye and heart; and 3) that all 3 RNases have antibacterial activities in vitro. These results, together with the presence of antibacterial and/or antiviral activities in multiple distantly related mammalian RNases, strongly suggest that the superfamily started as a host-defense mechanism in vertebrate evolution.  相似文献   

11.
12.
13.
Seminal RNase: a unique member of the ribonuclease superfamily   总被引:13,自引:0,他引:13  
The RNase found in bull semen, although a member of the mammalian superfamily of ribonucleases, possesses some unusual properties. Besides its unique structure and enzymic properties, it displays antispermatogenic, antitumor and immunosuppressive activities. Seminal RNase belongs to an interesting group of RNases, the RISBASES (RIbonucleases with Special, i.e. non catalytic, Biological Actions) other members of which include angiogenin, selectively neurotoxic RNases, a lectin and the self-incompatibility factors from a flowering plant.  相似文献   

14.
In most tissues, ribonucleases (RNases) are found in a latent form complexed with ribonuclease inhibitor (RI). To examine whether these so-called cytoplasmic RNases belong to the same superfamily as pancreatic RNases, we have purified from porcine liver two such RNases (PL1 and PL3) and examined their primary structures. It was found that RNase PL1 belonged to the same family as human RNase Us [Beintema et al. (1988) Biochemistry 27, 4530-4538] and bovine RNase K2 [Irie et al. (1988) J. Biochem. (Tokyo) 104, 289-296]. RNase PL3 was found to be a hitherto structurally uncharacterized type of RNase. Its polypeptide chain of 119 amino acid residues was N-terminally blocked with pyroglutamic acid, and its sequence differed at 63 positions with that of the pancreatic enzyme. All residues important for catalysis and substrate binding have been conserved. Comparison of the primary structure of RNase PL3 with that of its bovine counterpart (RNase BL4; M. Irie, personal communication) revealed an unusual conservation for this class of enzymes; the 2 enzymes were identical at 112 positions. Moreover, comparison of the amino acid compositions of these RNases with that of a human colon carcinoma-derived RNase, RNase HT-29 [Shapiro et al. (1986) Biochemistry 25, 7255-7264], suggested that these three proteins are orthologous gene products. The structural characteristics of RNases PL1 and PL3 were typical of secreted RNases, and this observation questions the proposed cytoplasmic origin of these RI-associated enzymes.  相似文献   

15.
16.
The gene encoding RNase HII from the psychrotrophic bacterium, Shewanella sp. SIB1 was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RNase HII is a monomeric protein with 212 amino acid residues and shows an amino acid sequence identity of 64% to E. coli RNase HII. The enzymatic properties of SIB1 RNase HII, such as metal ion preference, pH optimum, and cleavage mode of substrate, were similar to those of E. coli RNase HII. SIB1 RNase HII was less stable than E. coli RNase HII, but the difference was marginal. The half-lives of SIB1 and E. coli RNases HII at 30 degrees C were approximately 30 and 45 min, respectively. The midpoint of the urea denaturation curve and optimum temperature of SIB1 RNase HII were lower than those of E. coli RNase HII by approximately 0.2 M and approximately 5 degrees C, respectively. However, SIB1 RNase HII was much more active than E. coli RNase HII at all temperatures studied. The specific activity of SIB1 RNase HII at 30 degrees C was 20 times that of E. coli RNase HII. Because SIB1 RNase HII was also much more active than SIB1 RNase HI, RNases HI and HII represent low- and high-activity type RNases H, respectively, in SIB1. In contrast, RNases HI and HII represent high- and low-activity type RNases H, respectively, in E. coli. We propose that bacterial cells usually contain low- and high-activity type RNases H, but these types are not correlated with RNase H families.  相似文献   

17.
Cytosolic RNase inhibitor binds to and neutralizes most members of the pancreatic type RNase superfamily. However, there are a few exceptions, e.g. amphibian onconase and bovine seminal RNase, and these are endowed with cytotoxic activity. Also, RNase variants created by mutagenesis to partially evade the RNase inhibitor acquire cytotoxic activity. These findings have led to the proposal that the cytosolic inhibitor acts as a sentry to protect mammalian cells from foreign RNases. We silenced the expression of the gene encoding the cytosolic inhibitor in HeLa cells and found that the cells become more sensitive to foreign cytotoxic RNases. However foreign, non-cytotoxic RNases remain non-cytotoxic. These results indicate that the cytosolic inhibitor neutralizes those foreign RNases that are intrinsically cytotoxic and have access to the cytosol. However, its normal physiological role may not be to guard against foreign RNases in general.  相似文献   

18.
We present sequences of five novel RNase A superfamily ribonuclease genes of the bullfrog, Rana catesbeiana. All five genes encode ribonucleases that are similar to Onconase, a cytotoxic ribonuclease isolated from oocytes of R. pipiens. With amino acid sequence data from 14 ribonucleases from three Rana species (R. catesbeiana, R. japonica, and R. pipiens), we have constructed bootstrap-supported phylogenetic trees that reorganize these ribonucleases into five distinct lineages--the pancreatic ribonucleases (RNases 1), the eosinophil-associated ribonucleases (RNases 2, 3, and 6), the ribonucleases 4, the angiogenins (RNases 5) and the Rana ribonucleases--with the Rana ribonucleases no more closely related to the angiogenins than they are to any of the other ribonuclease lineages shown. Further phylogenetic analysis suggests the division of the Rana ribonucleases into two subclusters (A and B), with positive (Darwinian) selection (dN/dS > 1.0) and an elevated rate of radical nonsynonymous substitution (dR) contributing to the rapid diversification of ribonucleases within each cluster. This pattern of evolution-rapid diversification via positive selection among sequences of a multigene cluster-bears striking resemblance to what we have described for the eosinophil-associated ribonuclease genes of the rodent Mus musculus, a finding that may have implications with respect the physiologic function of this unique family of proteins.  相似文献   

19.
A novel protein family, designated hereafter as RNase kappa (kappa) family, has been recently introduced with the characterization of the specific Cc RNase, isolated from the insect Ceratitis capitata. The human ortholog of this family consists of 98 amino acids and shares > 98% identity with its mammalian counterparts. This RNase is encoded by a single-copy gene found to be expressed in a wide spectrum of normal and cancer tissues. The cDNA of the human ribonuclease has been isolated and subcloned into a variety of prokaryotic expression vectors, but most efforts to express it caused a severe toxic effect. On the other hand, the expression of the human RNase by the use of the methylotrophic yeast Pichia pastoris system resulted in the production of a highly active recombinant enzyme. Using a 30-mer 5'-end-labeled RNA probe as substrate, the purified enzyme seems to preferentially cleave ApU and ApG phosphodiester bonds, while it hydrolyzes UpU bonds at a lower rate. Based on amino acid sequence alignment and substrate specificity data, as well as the complete resistance of the recombinant protein to the placental ribonuclease inhibitor, we concluded that the human RNase kappa is a novel endoribonuclease distinct from other known ribonucleases.  相似文献   

20.
Several clones of human eosinophil-derived neurotoxin (EDN) cDNA have been isolated from a lambda gt10 cDNA library prepared from mRNA derived from noninduced HL-60 cells. The amino acid (aa) sequence deduced from the coding sequence of the EDN cDNA is identical to the aa sequence of urinary nonsecretory RNase. Comparison of the aa and/or nucleotide (nt) sequences of EDN and other proteins possessing ribonucleolytic activity, namely bovine seminal RNase, human and rat pancreatic RNases, eosinophil cationic protein (ECP), and human angiogenin, shows extensive identity at half-cystine residues and at aa of active sites. Differences in aa sequences at the active sites are often the result of single nt changes in the codons. The data presented here support the concept of a RNase gene superfamily containing secretory and nonsecretory RNases, angiogenin, EDN and ECP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号