首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
T Wei  M Tao 《FEBS letters》1991,292(1-2):141-144
The relationship and substrate specificity of the human erythrocyte membrane kinase and casein kinase A were investigated. Based on Staphylococcus aureus V8 protease digestion patterns, the 2 kinases appeared to be structurally homologous. These enzymes also exhibited the same substrate specificity and phosphorylated the same synthetic peptides and domains of ankyrin. Both kinases did not utilize GTP effectively as a substrate and were not inhibited by low concentrations of heparin, suggesting that they were type I casein kinases. An analysis of synthetic peptide phosphorylation failed to reveal a specific pattern of recognition of the amino acid sequence surrounding the phosphorylation site.  相似文献   

2.
Glycogen synthase kinase-3 (ATP:protein phosphotransferase, EC 2.7.1.37) phosphorylated K-casein 20-fold more rapidly than beta-casein, while alpha S1-casein was not a substrate. This distinguished it from casein kinase-I and casein kinase-II, which phosphorylate the beta-casein variant preferentially. Glycogen synthase kinase-3 phosphorylated a serine residue(s) in the C-terminal cyanogen bromide fragment on K-casein. In contrast, cyclic AMP-dependent protein kinase phosphorylated the N-terminal fragment, and phosphorylase kinase the N-terminal and intermediate cyanogen bromide fragments. The results emphasize the potential value of casein phosphorylation as a means of classifying protein kinases.  相似文献   

3.
Three cyclic AMP-independent acetyl-CoA carboxylase kinases (A, B1 and B2) have been isolated from lactating rat mammary gland, using phosphocellulose chromatography, high performance gel filtration, and affinity chromatography on casein-Sepharose and phosvitin-Sepharose. These protein kinases have been identified with previously described kinases by the following criteria. Kinase A phosphorylates the same sites on rabbit mammary acetyl-CoA carboxylase as acetyl-CoA carboxylase kinase 2, which was originally described as a contaminant of rabbit mammary acetyl-CoA carboxylase purified by the poly(ethylene glycol)procedure. Kinase A will henceforth be referred to as acetyl-CoA carboxylase kinase-2. Kinase B1 has been identified with casein kinase II by its heparin sensitivity, elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. Kinase B2 has been identified with casein kinase I by its elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. The three kinases phosphorylate distinct sites on acetyl-CoA carboxylase. Phosphorylation by either casein kinase I or II does not affect enzyme activity. However, acetyl-CoA carboxylase kinase 2 inactivates acetyl-CoA carboxylase reversibly, in an identical manner to cyclic-AMP-dependent protein kinase, and phosphorylates sites located on identical peptides. Acetyl-CoA carboxylase kinase-2 can, however, be distinguished from the free catalytic subunit of cyclic-AMP-dependent protein kinase by its molecular mass, its substrate specificity, its elution behaviour on phosphocellulose, and its complete lack of sensitivity to the protein inhibitor of cyclic-AMP-dependent protein kinase. We also present evidence that phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase occurs directly and not via a bicyclic cascade system as proposed by other laboratories.  相似文献   

4.
The hexapeptides AcSer-Glu-Glu-Glu-Val-Glu and Ser-Glu-Glu-Glu-Glu-Glu, reminiscent of the sites phosphorylated by type-2 casein kinase TS in troponin T and glycogen synthase, respectively, have been synthesized and tested as phosphorylatable substrates for casein kinase TS as well as for other protein kinases. Both peptides are readily phosphorylated by casein kinase TS but not, to any detectable extent, by either cAMP-dependent protein kinase or phosphorylase kinase. Phosphorylation by type-1 casein kinase S was almost negligible. On the other hand the hexapeptide Ser-Glu-Glu-Glu-Ala-Ala is phosphorylated much more slowly and the hexapeptide Ser-Glu-Glu-Ala-Ala-Ala is almost unaffected by casein kinase TS. While the Vmax values of casein kinase TS with the acidic hexapeptides are comparable to those obtained with the corresponding protein substrates, the apparent Km values for the peptides are about two orders of magnitude higher than those for the protein substrates. The heptapeptide Arg-Ser-Glu-Glu-Glu-Val-Glu is a very poor substrate of casein kinase TS in comparison with the corresponding hexapeptide lacking the N-terminal Arg; it is, however, a competitive inhibitor toward the protein substrates, exhibiting a Ki similar to those of Ser-Glu-Glu-Glu-Glu-Glu and (Glu)5 which, in turn, are one order of magnitude higher than that of (Glu)10. It is concluded that the minimum structural requirement of type-2 casein kinases consists of a phosphorylatable residue followed by an acidic cluster, whose length is critical for the binding to the enzyme. Additional residues on the N-terminal side are not required, but their nature can influence the transphosphorylation reaction considerably.  相似文献   

5.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its beta-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2 beta. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2 beta by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2 beta labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2 beta was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

6.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

7.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its β-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2β. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2β by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2β labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2β was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

8.
The ability of protein kinases to phosphorylate synthetic peptides corresponding to identified protein phosphorylation sites has previously been used to determine primary structural requirements and has helped define distinct "recognition sequences" for a variety of enzymes. Here, we have used an immobilized synthetic peptide derived from glycogen synthase to specifically purify two protein kinases. In the case of one, glycogen synthase kinase-3, the peptide is only a substrate if previously phosphorylated at a distinct site by another protein kinase, casein kinase-II. This prerequisite is reflected in the differential affinity of glycogen synthase kinase-3 for the immobilized phospho- and dephosphopeptide. This difference in binding has been exploited to effect purification of glycogen synthase kinase-3 as well as casein kinase-II. The general applicability of peptide-based affinity chromatography is discussed.  相似文献   

9.
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent.  相似文献   

10.
Human, dog, and rabbit fibrinogen served as substrates for calcium-activated, phospholipid-dependent protein kinase, cAMP-dependent protein kinase, casein kinase TS, and casein kinase S. The chains of phosphorylated fibrinogen were separated by polyacrylamide gel electrophoresis and the phosphorylation patterns, obtained on autoradiography of the gels, were found to be characteristic for each of the four protein kinases. Dog, and even more so rabbit, fibrinogen was phosphorylated more rapidly than human fibrinogen by calcium-activated, phospholipid-dependent protein kinase and by casein kinase TS. Dog fibrinogen was not a good substrate for cAMP-dependent protein kinase. The rate of phosphorylation with casein kinase S did not differ very much between the fibrinogens of the three species. In most cases the A alpha-chain was most rapidly phosphorylated. However, in dog fibrinogen incubated with casein kinase TS the B beta-chain was most rapidly phosphorylated. A substantial part of this phosphate seemed to be incorporated as phosphorylthreonine into fibrinopeptide B. In human fibrinogen incubated with the casein kinase TS preparation the gamma-chain as well as the A alpha-chain appeared to be phosphorylated.  相似文献   

11.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1.  相似文献   

12.
Cyclic nucleotide-independent protein kinases that preferentially phosphorylated casein and phosvitin as substrate were detected in the nuclei of human and porcine thyroid tissues, and compared with those from rat liver. Enzymes were extracted from the isolated nuclei with a buffer solution containing 0.4 M NaCl, and analyzed by DEAE-Sephadex and phosphocellulose column chromatographies. The chromatographies, together with the characterization of the enzymes, demonstrated that human and porcine thyroid tissues contained two major casein kinases in the cell nuclei, the properties of which revealed that they are to be identified as protein kinases NI and NII.  相似文献   

13.
A protein kinase (casein kinase 1A) active on casein and phosvitin but not on histones has been purified to near homogeneity from yeast cytosol and meets most criteria for being considered a type-1 casein kinase: it is a monomeric enzyme exhibiting an Mr of about 27 kDa by sucrose gradient centrifugation: it is not affected by inhibitors of type-2 casein kinases, such as heparin and polyglutamate, and shows negligible affinity for GTP. It also readily phosphorylates the residue Ser-22 of beta-casein located within the sequence -Ser(P)-Ser(P)-Ser(P)-Glu-Glu-Ser22-Ile-Thr-Arg- which is typically affected by casein kinases of the first class. On the other hand, casein kinase 1A displays the unusual property of phosphorylating threonine residue(s) in both whole casein and alpha s1-casein. The threonine residue phosphorylated in alpha s1-casein and accounting for most of the 32P incorporated into this protein by casein kinase 1A has been identified as Thr-49, which occurs in the sequence -Ser(P)-Glu-Ser(P)-Thr(P*)49-Glu-Asp-Gln-, whose two Ser(P) residues are already phosphorylated in the native protein. It is concluded that some type-1 casein kinases can also phosphorylate threonine residues provided they fulfil definite structural requirements, probably an acidic cluster near their N-terminal side.  相似文献   

14.
The octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu, corresponding to the 14-21 sequence of bovine beta-casein A2 and 11 shorter and/or modified derivatives were synthesized and used as model substrates for three casein kinases: rat liver casein kinases 2 and 1 and a casein kinase isolated from the golgi-enriched fraction of lactating mammary gland (GEF-casein kinase). Casein kinase-2 readily phosphorylates the octapeptide at its Ser-4 residue with a Vmax value comparable to those obtained with protein substrates and Km values of 85 microM and 11 microM in the absence and presence of polylysine, respectively. These are the most favourable kinetic parameters reported so far with peptide substrates of casein kinase-2. Stepwise shortening of the octapeptide from its N terminus promotes both a gradual decrease of Vmax and an increase of Km, this being especially dramatic in passing from the hexapeptide Leu-Ser-Ser-Ser-Glu-Glu (Km 210 microM) to the pentapeptide Ser-Ser-Ser-Glu-Glu (Km 2630 microM). The tetrapeptide Ser-Ser-Glu-Glu is the shortest derivative still phosphorylated by casein kinase-2, albeit very slowly, and the tripeptides Ser-Glu-Glu and Glu-Leu-Ser were not substrates at all. Furthermore, the pentapeptide Ser-Ser-Ser-Glu-Glu was found to be a better substrate than Ser-Ser-Ala-Glu-Glu, Ser-Ala-Ser-Glu-Glu and Ser-Ala-Ala-Glu-Glu by virtue of its lower Km value. These data, while confirming that the motif Ser-Xaa-Xaa-Glu is specifically recognized by casein kinase-2, strongly suggest that additional local structural features can improve the phosphorylation efficiency of serine-containing peptides which are devoid of the large acidic clusters recurrent in many phosphorylation sites of casein kinase 2. In particular, predictive structural analysis as well as NMR and C18 reverse-phase HPLC elution profile data support the hypothesis that a beta-turn conformation is responsible for the remarkable suitability of the octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu and some of its shorter derivatives to phosphorylation mediated by casein kinase-2. While neither the peptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu nor any of its derivatives were affected by casein kinase-1, a rapid phosphorylation of the octapeptide by GEF-casein kinase at Ser-5 (not Ser-4) was obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Previous reports from this laboratory and others have established that both the rabbit and human erythrocyte membranes contain multiple protein kinase and phosphate acceptor activities. We now report that these membranes also contain phosphoryl acceptor sites for the soluble cyclic AMP-dependent and -independent protein kinases from rabbit erythrocytes. The rabbit erythrocyte membrane, which does not contain a cyclic AMP-dependent protein kinase, has at least four polypeptides (Bands 2.1, 2.3, 4.5, and 4.8) which are phosphorylated in the presence of the soluble cyclic AMP-dependent protein kinases I, IIa, and IIb isolated from rabbit erythrocyte lysates. The resulting phosphoprotein profile is very similar to that obtained for the cyclic AMP-mediated autophosphorylation of human erythrocyte membranes. The activities of the soluble cyclic AMP-dependent protein kinases toward the membranes have been studied at several pH values. Although the substrate specificity of the three kinases is similar, polypeptide 2.3 appears to be phosphorylated to a greater extent by kinase IIa than by I or IIb. This occurs at all pH values studied. Also apparent is that the pH profile for membrane phosphorylation is different from that of histone phosphorylation. The phosphorylation of membrane proteins can also be catalyzed by the soluble erythrocyte casein kinases. These enzymes are not regulated by cyclic nucleotides and can use either ATP or GTP as their phosphoryl donor. Polypeptides 2.1, 2.9, 4.1, 4.5, 4.8, and 5 of both human and rabbit erythrocyte membranes are phosphorylated in the presence of GTP and the casein kinases. This reaction is optimal at pH 7.5. Experiments were performed to determine whether the phosphorylation of the membranes by the soluble and membrane-bound kinases is additive or exclusive. Our results indicate that after maximal autophosphorylation of the erythrocyte membranes, phosphoryl acceptor sites are available to the soluble cyclic AMP-dependent and -independent protein kinases. Furthermore, after maximal phosphorylation of the membranes with one type of soluble kinase, further 32P incorporation can occur as a result of exposure to the other type of soluble kinase.  相似文献   

16.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [gamma-32P]GTP, low levels of [gamma-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

17.
The alpha subunit of eukaryotic protein synthesis initiation factor (eIF-2 alpha) is phosphorylated at a single serine residue (Ser51) by two distinct and well-characterized protein kinase, the haem-controlled repressor (HCR) and the double-stranded RNA-activated inhibitor (dsI). The sequence adjacent to Ser51 is rich in basic residues (Ser51-Arg-Arg-Arg-Ile-Arg) suggesting that they may be important in the substrate specificity of the two kinases, as is the case for several other protein kinases. A number of proteins and synthetic peptides containing clusters of basic residues were tested as substrates for HCR and dsI. Both kinases were able to phosphorylate histones and protamines ar multiple sites as judged by two-dimensional mapping of the tryptic phosphopeptides. These data also showed that the specificities of the two kinases were different from one another and from the specificities of two other protein kinases which recognise basic residues, cAMP-dependent protein kinase and protein kinase C. In histones, HCR phosphorylated only serine residues while dsI phosphorylated serine and threonine. Based on phosphoamino acid analyses and gel filtration of tryptic fragments, dsI was capable of phosphorylating both 'sites' in clupeine Y1 and salmine A1, whereas HCR acted only on the N-terminal cluster of serines in these protamines. The specificities of HCR and dsI were further studied using synthetic peptides with differing configurations of basic residues. Both kinases phosphorylated peptides containing C-terminal clusters of arginines on the 'target' serine residue, provided that they were present at positions +3 and/or +4 relative to Ser51. However, peptides containing only N-terminal basic residues were poor and very poor substrates for dsI and HCR, respectively. These findings are consistent with the disposition of basic residues near the phosphorylation site in eIF-2 alpha and show that the specificities of HCR and dsI differ from other protein kinases whose specificities have been studied.  相似文献   

18.
A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.  相似文献   

19.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

20.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号