首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The early development of taste sensilla has been studied with special emphasis on cilia, dendrite, and pore formation.In the 39-h stage (the first stage investigated) differentiation of sensilla is already under way. The mechanisms of differentiation of dendrites (39–48 h) deviate from the mechanisms described for differentiation of true cilia. In taste hairs the centrioles meet in the tip of the narrowed apical region of the sensory neuron. Together they sink deeper into this region and line up coaxially, thus forming the basal body complex. Thereafter, lateral contacts between this complex and the plasma membrane of the neuron are established. Formation of open connections between the trichogen lumen of the hair and the environment, or the dendrite lumen, was not observed.Electrophysiological data indicate that the sensilla become functional from 3 days before emergence onwards.List of Abbreviations B Basal body complex - bc Basal compartment - bs Basal sheath - bl Basement lamina - D Dendrite(s) - EPC Non-sensillar epithelial cells - ES Ecdysial sheath - GERL Granular endoplasmatic reticulum-lysosomes - HS Hemolymph space - P Protrusions - PRN Prospective receptor neuron - RER Rough endoplasmatic reticulum - RN Receptor neuron - n Neck - THC Thecogen cell - TOC Tormogen cell - TRC Trichogen cell - TRS Trichogen sprout  相似文献   

2.
Summary The mechanoreceptive and chemoreceptive hairs on the legs of the cribellate spiderCiniflo similis were examined during the moulting cycle. In mechanoreceptive hairs the new hair shaft is formed around the extended dentrites, which emerge from near the tip of the newly forming hair and continue to the old sensillum within the extended dendritic sheath. Thus there is no ecdysial canal in the base of the hair shaft as found in insect mechanoreceptive hairs. The dendritic connection with the old hair is maintained until shortly before ecdysis by which time new tubular bodies have developed in the same dendrites at the base of the new hair. In chemoreceptive sensilla the new hair shaft is also formed around the elongated outer segment of the dendrites (19 chemosensitive and 2 mechanosensitive). The two mechanosensitive dendrites develop new tubular bodies at the base of the hair. As ecdysis occurs the old dendritic sheath and dendrites are snapped off at the tip of the new hair but the pore remains open. The ultrastructural evidence indicates that the roles of the three main enveloping cells are as follows: The dendritic sheath cell secretes the dendritic sheath, the middle enveloping cell forms the hair shaft while the outer enveloping cell forms the socket. This pattern corresponds closely to that observed in insecta sensilla. The extreme length of the chemoreceptive dendrites during moulting is mentioned in connection with receptor function. The unique multi-layered nature of the middle enveloping cell is seen as a device for the formation of regularly occurring rows of small spines on the shaft of the hair.  相似文献   

3.
The antenna of fourth instar larvae of Aedes aegypti has one peg organ of a basiconic type innervated by four neurons. The dendrites are ensheathed to near their terminations at the peg tip by an electron-dense dendritic sheath and by a cuticular sheath. They have easy communication by diffusion with the external environment only at the tip through a peripheral ensheathing membrane and six slit-channels. One of the dendrites resembles a tubular body proximally and may be mechanoreceptive. The peg generally appears to be a contact chemoreceptor. There are three antennal hairs of a typical sensillum trichodeum type innervated at the base by one neuron each. An intricate terminal mechanism at the insertion of the dendrite in the hair is described. These are believed to be tactile hairs. There are also three antennal hairs each innervated by two neurons. The dendrite from one terminates at the base similar to that of a tactile hair, and is believed to function in a similar mechanoreceptive manner. The dendrite from the second neuron extends naked along the length of the hair lumen. It is believed to be primarily chemoreceptive, in a slow-acting general sensory function. In all the sensilla there appear to be secretions produced in the junction body regions of the dendrites, and there is evidence for accumulation of secretory materials in the dendritic tips in some of the sensilla.  相似文献   

4.
T. A. Keil 《Zoomorphology》1984,104(3):147-156
Summary Olfactory trichoid hairs on the antennae of male Antheraea silkmoths were reconstructed with respect to the following parameters: number, shape, course, and dimensions of outer dendritic segments as well as the numbers of their microtubules; inner and outer dimensions of the cuticular hair shafts; and number and distribution of pores and pore tubules in the hair walls. The smallest distances between dendritic membranes and inner hair surfaces were determined with respect to the possibility of pore tubule contacts. It was shown that most hairs contain one thick and one, or frequently two, thin dendrites. The number of microtubules in the dendrites is correlated with dendrite diameter, which decreases towards the hair tip. The dendrites form numerous swellings and constrictions: this beading occurs especially along the thin dendrites. The dendrites do not run straight, but rather follow a sinuous course in the hairs. The density of wall pores is lowest in the basal region of the hairs. Only in relatively few places do the dendritic membranes get near enough the hair walls to come into the probable range of the pore tubules. In the sensilla trichodea of A. polyphemus, the hairs as well as the dendrites have markedly smaller diameters than in A. pernyi.  相似文献   

5.
Antennal sensilla ofNeomysis integer (leach)   总被引:1,自引:0,他引:1  
G. -W. Guse 《Protoplasma》1978,95(1-2):145-161
Summary The most frequent type of the hair sensilla on the antennae ofNeomysis integer is investigated by electron microscopic methods. The cellular properties of the sensilla are compared with those of other arthropods in order to detect possible homologies.The hairs are innervated by 2, 3, 6, 8, 9, or 10 sensory cells. The dendrites show an inner and outer dendritic segment. Five or six enveloping cells belong to a sensillum. In intermoult stage, processes of all the enveloping cells except the innermost one extend into the hair shaft. The sensory hairs possess only a single liquor cavity, which morphologically is homologous to the inner lymph cavity of insect sensilla. Around the liquor cavity, a supporting structure is located which seems to be identical to the scolopale of chordotonal organs. The six-to tenfold-innervated hairs possess two groups of differently structured dendrites which are regularly arranged on opposite sides of the liquor cavity. The outer dendritic segments are enclosed in a dendritic sheath. It is secreted by the innermost enveloping cell (= dendritic sheath cell of insect sensilla). All the outer dendritic segments terminate in the distal region of the hair shaft which shows a pore at its tip. The possible function of the sensilla is discussed. The double and triple-innervated hairs are considered to be mechano-receptors, whereas the sensilla associated with six to ten sensory cells might be mechano-chemoreceptors.  相似文献   

6.
Summary Four envelope cells are responsible for the formation of the basiconical sensilla of Calliphora. They are the thecogen, trichogen, and tormogen cells, and envelope cell 4. In early stages of development the still subepithelial sensory cilia are completely enclosed by the innermost thecogen cell. The first formation movements are initiated by a growth thrust of the hair-forming cell into the exuvial space. The sensory cilia only begin to grow into the hair anlage when the hair-forming cell has almost reached its final length. As soon as growth is completed the trichogen cell, tormogen cell, and envelope cell 4 start to excrete cuticular material. The trichogen cell forms the perforated part of the hair shaft and the stimulus-conducting system consisting of the pore tubules. The tormogen cell is responsible for the excretion of the basal non-perforated hair shaft and sheath cell 4 forms the proximal part of the socket region. The thecogen cell only begin to produce dendritic sheath material when the sensory hair is almost complete.Approximately 7–8 days after pupation the tormogen cell degenerates, having, by this time, produced about two-thirds of the sensilla cuticle. The surrounding envelope cells incorporate cell fragments of the tormogen cell. The trichogen cell continues the secretion where the tormogen cell left off. When the secretion of cuticle is finished the sheath cells begin to withdraw towards the proximal direction and to form microvilli on the apical membrane. The resulting outer receptor lymph space is bordered by envelope cell 4 and the trichogen and thecogen cells. The tormogen cell is absent in the sensilla of the imago.Abbreviations DS dendritic sheath - E4 envelope cell 4 - Ex exuvial space - G glial cell - iD inner dendritic segment - iRL inner receptor lymph space - oRL outer receptor lymph space - oD outer dendritic segment - P pore - PT pore tubules - S sensory cell - T thecogen cell - TO tormogen cell - TR trichogen cell Part 1 of a dissertation accepted by the Faculty of Bio- and Geosciences, University of Karlsruhe  相似文献   

7.
Summary The embryonic development of palpal contact chemosensitive sensilla was studied from 42% of development up to the hatching of the larvae. Ciliogenesis of the sensory cells can be observed at the earliest stages investigated. A complex consisting of two basal bodies and a cap-like ciliary vesicle is localized in the dendritic inner segment. It migrates apically and fuses with the cytoplasmic membrane. At the same time, microtubule doublets of the distal basal body elongate, thus generating the dendritic outer segment. Furthermore, the typical accessory structures of a motile cilium are formed. Although the central pair of microtubules is lacking, the dendritic outer segment can be considered as a modified motile cilium. At about 84% of development the hair structure starts to be formed. Whereas the socket is generated by the tormogen cell, the trichogen cell produces the hair shaft and terminal porus. The dendrite sheath, which rises above the newly formed hair, is attached apically to the embryonic cuticle forming an irregular pore. In larvae and imagines, the inner surface of the dendrite sheath is highly differentiated. A range of circular ledges and filamentous structures wrapping around the dendritic outer segments can be distinguished. These may have a stabilizing function. Furthermore, in cryofixed specimens, the dendritic outer segments possess regularly spaced swellings which are about 1 m in length and about 0.5 m in diameter. Their functional significance is still unclear.  相似文献   

8.
Keil TA  Steiner C 《Tissue & cell》1991,23(6):821-851
During adult development of the male silkmoth Antheraea polyphemus, the anlagen of olfactory sensilla arise within the first 2 days post-apolysis in the antennal epidermis (stage 1-3). Approximately on the second day, the primary dendrites as well as the axons grow out from the sensory neurons (stage 4). The trichogen cells start to grow apical processes approximately on the third day, and these hair-forming 'sprouts' reach their definite length around the ninth day (stages 5-6). Then the secretion of cuticle begins, the cuticulin layer having formed on day 10 (stage 7a). The primary dendrites are shed, the inner dendritic segments as well as the thecogen cells retract from the prospective hair bases, and the inner tormogen cells degenerate around days 10/11 (stage 7b). The hair shafts of the basiconic sensilla are completed around days 12/13 (stage 7c), and those of the trichoid sensilla around days 14/15 (stage 7d). The trichogen sprouts retract from the hairs after having finished cuticle formation, and the outer dendritic segments grow out into the hairs: in the basiconic sensilla directly through, and in the trichoid sensilla alongside, the sprouts. The trichogen sprouts contain numerous parallel-running microtubules. Besides their cytoskeletal function, these are most probably involved in the transport of membrane vesicles. During the phase of cuticle deposition, large numbers of vesicles are transported anterogradely from the cell bodies into the sprouts, where they fuse with the apical cell membrane and release their electron-dense contents (most probably cuticle precursors) to the outside. As the cuticle grows in thickness, the surface area of the sprouts is reduced by endocytosis of coated vesicles. When finally the sprouts retract from the completed hairs, the number of endocytotic vesicles is further increased and numerous membrane cisterns seem to be transported retrogradely along the microtubules to the cell bodies. Here the membrane material will most probably be used again in the formation of the sensillum lymph cavities. Thus, the trichogen cells are characterized by an intensive membrane recycling. The sensillum lymph cavities develop between days 16-20 (stage 8), mainly via apical invaginations of the trichogen cells. The imago emerges on day 21.  相似文献   

9.
G. -W. Guse 《Protoplasma》1980,105(1-2):53-67
Summary The sensilla are associated with 6 enveloping cells. The innermost enveloping cell (e 1) secretes the dendritic sheath (=thecogen cell). All other enveloping cells are involved in the formation of the outer cuticular apparatus in secreting the cuticle of a definite region of the new hair shaft.The development of the new sensilla begins when an exuvial space expands between old cuticle and epithelium. The newly forming hair shafts lie folded back in an invagination of the epidermal tissue. Only a distal shaft part projects into the free exuvial space. The cuticle of the distal and middle shaft region is secreted by the three middle enveloping cells (e 2–e 4) (=trichogen cells), which are arranged around the dendritic sheath.The wall of the cylinder, in which the distal shaft is situated, is formed by the cuticle of the future proximal shaft region. It is secreted by the outer enveloping cells (e 5 and e 6). Furthermore, both enveloping cells form the hair socket (=trichogen-tormogen cells).The outer dendritic segments encased within a dendritic sheath run up through the newly formed hair shaft and continue to the old cuticular apparatus. The connection between sensory cells and old hair shaft is maintained until ecdysis. On ecdysis the old cuticle is shed and the newly formed shaft of the sensillum is everted like the invaginated finger of a glove. The dendritic sheath and the outer dendritic segments break off at the tip of the new hair shaft. Morphologically this moulting process ensures that the sensitivity of the receptors is maintained until ecdysis.The internal organization of the sensory cells shows no striking changes during the moulting cycle. An increased number of vesicles is accumulated distally within the inner dendritic segments and distributed throughout the outer segments of the dendrites. The cytoplasmic feature of the enveloping cells indicates that synthesis and release of substances for the cuticular apparatus of the new sensillum take place.  相似文献   

10.
Summary The filiform hairs, mechanoreceptors of Gryllus, pass through six developmental stages during the last larval stage. The cytoplasm of their sense cells suggests intensive synthesis of protein for cellular metabolism and intercytoplasmic exchange of material via glial evaginations. Ultrahistochemical tests demonstrated acid phosphatase in the lysosomes as well as in components of the Golgi apparatus. There was no significant change in the appearance of the sense cell cytoplasm, indicating a maintained functional state also during molting. The new cuticular apparatus is formed after apolysis by the three enveloping cells. Formation of the replacement hairs is initiated by a cytoplasmic outgrowth of the trichogen cell. During morphogenesis of the new hair, the microtubules serve as a cytoskeleton and probably control the flow of vesicles, which contain phenol oxidase, also demonstrated in the Golgi apparatus, and are incorporated into the new cuticle. Bundles of microfibrils are involved in the surface sculpturing of the replacement hair. The trichogen cell also forms a number of structural elements, e.g. the cup and strut marked geometric peculiarities of which indicate that they are important in the spatial orientation of the dendrite and thus also in transduction. Reduction of the apical cell membrane of the tormogen cell after apolysis permits unrestricted growth of the new hair into the exuvial space. The tormogen cell participates in the formation of the joint membrane, parts of the socket and the articulation of the hair.Supported by the Deutsche Forschungsgemeinschaft. The author thanks Mrs. G. Thomas for drawing the diagrams, and Miss I. Grossman and Mrs. M. Ullmann for technical assistance  相似文献   

11.
The sensory innervation of the mandibular stylets of the aphid Brevicoryne brassicae (L.) has been examined by electron microscopy. Two groups of sensory neurones are present in the mandible. Each has two neurones, one with a short dendrite extending into the base of the mandible and ending in the base and another with a long microtubular process which extends 500 m? down to the distal tip of the mandible. The two neurones are enclosed by an ensheathing cell comparable to the trichogen cell enveloping the group of neurones innervating pegs and hairs. This ensheathing cell is supported by extensive electron-dense filaments to form a scolopale and is embedded in the mass of stylet-forming cells at the base of the mandible. The inner segments of the dendrites are anchored to the ensheathing cell by desmosome junctions. Desmosome junctions also bind the microtubular outer segments of the short and long dendrite to each other. There is no evidence of a dendritic sheath enclosing the distal portion of the short dendrite which ends while still in the extracellular space within the ensheathing cell. The microtubular process of the long dendrite extends down the lumen of the mandible enclosed by a close-fitting extracellular sheath which penetrates and is attached to the cuticular wall of the mandible tip. Distally this sheath is thickened on one side. Deflection of the mandible would therefore deform the dendritic membrane asymmetrically because the thin walls of the sheath would bend more than the thick walls. This would exert an unequal mechanical strain on the dendritic membrane which could result in depolarization in response to deflection in a particular direction. The arrangement of the dendrites and their sheaths within the mandible is such that deflection to the right would distort one dendrite in the same way as deflection to the left would distort the other.  相似文献   

12.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

13.
ABSTRACT. The ovipositor of the female sheep blowfly, Lucilia cuprina (Wied.) (Diptera: Calliphoridae), has a complement of cercal sensilla that includes long, medium and short tactile hairs, two campaniform domes, four olfactory pegs, and ten double-channelled gustatory hairs. This sensory array is suited to assess oviposition site resources, prior to and during the laying of an egg batch.
The tactile hairs and campaniform sensilla are each innervated by a single, tubular body containing dendrite. The olfactory pegs are each innervated by a single, moderately branched dendrite, which gains access to the external environment via pores at the bottom of deep grooves in the peg wall. The gustatory hairs fall into two categories. Four hairs have a single, tubular body containing dendrite at their base, and four unbranched dendrites running up to the hair tip which has a terminal pore. Six of the taste hairs have no tubular body containing dendrite at the base, and three unbranched dendrites running up to a terminal pore.  相似文献   

14.
Summary (1) The male abdominal scent organ (corema) of the arctiid mothCreatonotos transiens consists of a basal bladder and four tubes. It can be everted from the sternal intersegmental membrane 7/8. Its scent hairs (scales) produce and release the pheromone hydroxydanaidal, which attracts both sexes. Pyrrolizidine alkaloids (PA) ingested by the larva with its food are not only precursors of the pheromone but also a morphogen, which quantitatively controls the growth of the pupal corema and, thus, its final size and number of hairs. (2) The coremata arise from epidermalanlagen at the anterior border of the 8th abdominal sternite. If male larvae are fed 1 mg PA these organs begin to develop from small vesicles, and four tubes then arise during the first 3 pupal days. The corresponding mitoses reach their peak at 36 h. During the next 2 days the tubes shorten, while the walls become thin and doubly folded. The total surface of the corema increases about 20 times because of the shape transformation of the epidermal cells from prismatic to very flat. (3) The scent hairs originate from trichogen cells, which arise together with their associated tormogen cells during the 1st pupal day by way of differential mitoses. As the trichogen cells grow, their nuclei enlarge by way of endomitoses, elongate distally, and thus produce the hairs that extend into the lumen of the corema. Tormogen cells degenerate by the 8th day at latest. The hairs in each tube form a thick, caudally oriented bundle. The hair cells are finally bottle-shaped and at day 6 they extend freely into the hemolymph space. They are probably also the pheromoneproducing cells in later pupal and early imaginal life. Mitoses that produce trichogen cells stop after the 1st day, those producing epithelial cells 2 days later. This delay shifts the ratio of the two cell types from about 111 (18 h) to 140. (4) The processes hitherto described refer to normogenesis with ample PA supply. Control coremata in PA-free or PA-deficient specimens develop in principle in the same way, but at a slower rate, with minimal hair cell numbers barely 1/10th of normal, or at any rates between, depending upon the earlier PA supply. The size of control coremata varies from very small to small; even the hair cells and the hairs are smaller. (5) PA regulates corema development quantitatively through the number of mitoses of its cells and of endomitotic steps of the hair cells. In PA-treated specimens the coremaanlage is already advanced prior to pupation, at about the time when its sensitivity to PA influence terminates, in the early prepupa. Since PA only affects the anlagen of the corema and not that of any other body part (not even the basal coremal bladder), we postulate a selective interaction of PA with the presumptive corema cells. We found earlier that ecdysone is also involved, since the respective cell numbers can only be realized if this hormone is present.  相似文献   

15.
R. Martini  K. Schmidt 《Protoplasma》1984,119(3):197-211
Summary The oval pore plates (approx. 17 m long) are separated from the antennal cuticle by a furrow, the inner wall of which is flexible. The thin perforated plates are strengthened by an encircling and a middle ledge, the latter of which branches into about 100 almost parallel rims. Each pore plate is innervated by about 20 sense cells. The dendrites fork into numerous branches occupying the outer receptor lymph cavity below the perforated plate. Each pore plate is associated with one thecogen cell, two trichogen cells, one tormogen cell and one envelope cell 4. A so-called additional cell surrounds the sensillum in the imaginal stage. The envelope cells in the later of the two pupal stages examined, have reached an arrangement which immediately precedes the secretion of the cuticulin layer. The surface of the duplicate trichogen cells is almost equal in area to the completed perforated plate. A dendritic sheath, entirely reduced in the imago, protrudes into the exuvial space, where it encloses a single dendrite.In the younger pupal stage the Sensillenanlage forms a crater, whereby envelope cell 4 overtops the other envelope cells. The distal ends of the trichogen cells are divided into several appendages that form the bottom of the crater.  相似文献   

16.
Summary The ontogeny of the chemoreceptive sensilla in the labial palp-pit organ was studied in Pieris rapae by examining twelve successive stages between pupation and emergence of the imago, which takes a period of 160 h under the experimental conditions. Mitoses occur until 20 h after pupation. They lead to anlagen of sensilla, 91% of which are comprised of three sensory cells. However, two sensory cells degenerate in each sensillum during a period of 28 h. The same process occurs in anlagen with four sensory cells resulting in bicellular sensilla. Axons grow out only after the number of sensory cells has been reduced. Further consecutive steps in sensory cell differentiation are: (a) outgrowth of dendritic outer segment and dendrite sheath; (b) outgrowth of trichogen process and change in structure of elongating dendrite sheath; (c) deposition of cuticle and pore tubules in the pegs; (d) retraction of trichogen process; (e) increase in diameter of dendritic outer segment accompanied by increase of microtubule number and appearance of regularly spaced electron-dense bodies at tubular doublets; (f) branching of dendritic outer segment; and (g) transformation of the dendritic branches into curled lamellae and partial destruction of the dendrite sheath. The unique process of sensory cell degeneration is interpreted as an event that revokes a step towards a possible functional improvement of the labial palp-pit organ during further evolutionSupported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

17.
Summary Rows of long, smooth hair sensilla situated on both sides of the leg coxae were examined in the spider Cupiennius salei (Ctenidae). The hair shafts point into the space between adjacent legs and are deflected when the hairs of one coxa touch the cuticle of the neighboring coxa. 1. Unlike the serrated hair shafts of the ubiquitous tactile and chemosensitive setae of spiders, these hairs are entirely smooth. At their base they are articulated in a socket with an asymmetrical groove that determines the direction of hair deflection. Hair shafts are up to 1000 m long. The exact grouping of smooth hairs in rows is typical of the coxae for each pair of legs. 2. Unlike the other, multiply innervated cuticular sensilla of spiders, smooth hairs are supplied by only a single mechanosensitive neuron. This is confirmed by electrophysiological recordings from single hairs. Threshold deflection to elicit a spike response lies near 1°. The response to maintained, step-like stimuli declines rapidly. 3. All central endings of these hair receptors in the fused segmental ganglia are confined to dorsal neuropil of the ipsilateral neuromere. The specific arborization pattern resembles an elongated, three-pronged fork with a long central prong. Topography, natural stimulus situation, and the phasic response characteristic of smooth hairs suggest that spiders use these sensilla to monitor the relative distance between leg coxae during locomotion.  相似文献   

18.
Summary The internal and external structure of the galeae of the adult red turnip beetle, Entomoscelis americana, was studied using SEM and TEM. The galea broadens from base to truncated tip and its sides are of thick, sculpted cuticle invested with pores and coarse spines. The tip is of thinner, flexible cuticle covered with 8–12 uniporous, blunt-tipped apical pegs and a single, aporous, sharply-pointed apical hair.The coarse spines are singly innervated probable mechanosensilla owing to the tubular body at the distal end of the dendrite. These sensilla likely act as tactile hairs monitoring galeal-effected movements of food particles into the functional mouth. The pores are associated with glands within the galea. The function of the presumed secretion is not known but may be to keep objects and dried saliva from sticking to the mouthparts.The apical pegs are innervated by five neurons, each producing a single dendrite. Four dendrites enter the single peg lumen and communicate with the terminal pore. The fifth differentiates into a tubular body that inserts into the peg base. These are typical insect contact chemosensilla that, because of their location, would taste incoming food.The apical hair has no pores but is innervated by two neurons, each extending a dendrite into the hair lumen in chemosensillar fashion. The sensory mode of this sensillum is unknown but is probably not mechanoor chemoreception. Many of its features, reminiscent of taste hairs, lead us to hypothesize that it represents a one-time chemosensillum recently modified to a new form and sensory mode.Because larval and adult E. americana share similar food plant requirements, we hypothesize that similarities will be seen in their mouthpart sensilla. Comparisons of the adults and larvae show the common features between their respective galeal taste hairs are only those of insect contact chemosensilla in general. However, the adult apical hair and the larval medial sensillum show striking specific structural similarities. We propose that these are true structural and functional homologues.  相似文献   

19.
Summary The hair-peg organs of the shore crab, Carcinus maenas, are modified hair-sensilla. A small hair shaft (peg) is surrounded by a tuft of solid cuticular bristles (hairs). Each hair-peg organ is innervated by 6 sensory neurons, 2 of which have scolopidial (type-I) dendrites. The outer segments of all dendrites pass through a cuticular canal extending to the articulated hair base in which the 2 type-I dendrites terminate. The other 4 (type-II) dendrites reach the clavate tip of the hair shaft and have access to a terminal pore and a large sickle-shaped aperture. Three inner and 8–12 outer enveloping cells belong to a hair-peg organ. The innermost enveloping cell contains a scolopale, which has desmosomal connections to the ciliary rootlets of the type-I dendrites. An inner and an outer sensillum lymph space are present. The ultrastructural features of the dendrites and the cuticular apparatus indicate that the hair-peg organs are bimodal sensilla, comprising 2 mechano- and 4 chemosensitive sensory neurons. Extracellular recordings from the leg nerve indicate that the chemosensitive neurons of the hair-peg organs respond to changes in seawater concentration in the physiological range of Carcinus maenas.Supported by the Deutsche Forschungsgemeinschaft (SFB 45/A1; W. Gnatzy)  相似文献   

20.
The isopod Sphaeroma hookeri and many other isopods and peracarids have a sensory spine with laterally inserting sensory hair, positioned in the apical region of the propodal palm of pereopod 1. This spine is innervated by five to eight sensory cells (each giving rise to one cilium) the dendrites of which can be divided into an inner and outer dendritic segment. The cilia are surrounded by an extracellular, electron-dense dendritic sheath. Thirteen enveloping cells are present. The outer dendritic segment (structure beyond the basal bodies) contains two receptor lymph cavities; the inner one lying within the dendritic sheath is homologous with the inner receptor lymph cavity of insects. Scolopales, or tubular bodies, are lacking; their function is probably accomplished by the dendritic sheath. Apically the sensory hair does not have a pore, and the spine is heavily sclerotized. The inner dendritic segment begins with a basal body from which rootlets of different length and thickness extend into the dendrite. In the latter is an accumulation of vesicles. The dendrites keep close contact with other dendrites and the enveloping cells by desmosomal membrane structures. The possible importance of the sensory spine for phylogenetic studies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号