首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equine-virulent, epidemic/epizootic strains of Venezuelan equine encephalitis (VEE) virus (VEEV) arise via mutation of progenitor enzootic strains that replicate poorly in equines. Sequencing studies have implicated positively charged amino acids on the surface of the E2 envelope glycoprotein in the acquisition of equine virulence and viremia potential, suggesting that changes in binding to cell surface glycosaminoglycans (GAGs) may mediate VEE emergence. Therefore, we evaluated the binding of natural enzootic and epizootic VEEV isolates to Chinese hamster ovary (CHO) cells expressing normal, high levels of GAGs as well as to mutant CHO cells lacking GAG expression. Binding to GAGs was not consistently associated with the epizootic phenotype, and cell culture passages resulted in increased GAG binding. The low levels of GAG binding exhibited by some low-passage, equine-virulent subtype IC VEEV strains indicate that the positive-charge E2 mutations implicated in VEE subtype IC emergence are not artifacts of laboratory passage and suggest that GAG binding does not play a major role in mediating VEE emergence. The increased GAG binding exhibited by VEEV strain CPA201 from the 1993 Mexican epizootic, when compared to that of closely related enzootic subtype IE strains, was shown to result from a Glu-to-Lys mutation at position 117 of the E2 envelope glycoprotein.  相似文献   

2.
Epidemics of Venezuelan equine encephalitis (VEE) result from high-titer equine viremia of IAB and IC subtype viruses that mediate increased mosquito transmission and spillover to humans. Previous genetic studies suggest that mutations in the E2 envelope glycoprotein allow relatively viremia-incompetent, enzootic subtype ID strains to adapt for equine replication, leading to VEE emergence. To test this hypothesis directly, chimeric VEEV strains containing the genetic backbone of enzootic subtype ID strains and the partial envelope glycoprotein genes of epizootic subtype IC and IAB strains, as well as reciprocal chimeras, were used for experimental infections of horses. Insertion of envelope genes from two different, closely related enzootic subtype ID strains into the epizootic backbones resulted in attenuation, demonstrating that the epizootic envelope genes are necessary for the equine-virulent and viremia-competent phenotypes. The partial epizootic envelope genes introduced into an enzootic ID backbone were sufficient to generate the virulent, viremia-competent equine phenotype. These results indicate that a small number of envelope gene mutations can generate an equine amplification-competent, epizootic VEEV from an enzootic progenitor and underscore the limitations of small animal models for evaluating and predicting the epizootic phenotype.  相似文献   

3.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.  相似文献   

4.
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells.  相似文献   

5.
Venezuelan equine encephalitis virus (VEEV) is a reemerging pathogen and a continuing threat to humans and equines in the Americas. Identification of the genetic determinants that enable epizootic VEEV strains to arise and exploit equines as amplification hosts to cause widespread human disease is pivotal to understanding VEE emergence. The sensitivity to murine alpha/beta interferon-mediated antiviral activity was previously correlated to the epizootic phenotype of several VEEV strains. Infectious cDNA clones were generated from an epizootic subtype IC VEEV strain (SH3) isolated during the 1992 Venezuelan outbreak and a closely related enzootic, sympatric subtype ID strain (ZPC738). These VEEV strains had low-cell-culture-passage histories and differed by only 12 amino acids in the nonstructural and structural proteins. Rescued viruses showed similar growth kinetics to their parent viruses in several cell lines, and murine infections resulted in comparable viremia and disease. Unlike what was found in other studies of epizootic and enzootic VEEV strains, the sensitivities to murine alpha/beta interferon did not differ appreciably between these epizootic versus enzootic strains, calling into question the reliability of interferon sensitivity as a marker of epizootic potential.  相似文献   

6.
Recent studies have indicated that epizootic Venezuelan equine encephalitis (VEE) viruses can evolve from enzootic, subtype ID strains that circulate continuously in lowland tropical forests (A. M. Powers, M. S. Oberste, A. C. Brault, R. Rico-Hesse, S. M. Schmura, J. F. Smith, W. Kang, W. P. Sweeney, and S. C. Weaver, J. Virol. 71:6697-6705, 1997). To identify mutations associated with the phenotypic changes leading to epizootics, we sequenced the entire genomes of two subtype IC epizootic VEE virus strains isolated during a 1992-1993 Venezuelan outbreak and four sympatric, subtype ID enzootic strains closely related to the predicted epizootic progenitor. Analysis by maximum-parsimony phylogenetic methods revealed 25 nucleotide differences which were predicted to have accompanied the 1992 epizootic emergence; 7 of these encoded amino acid changes in the nsP1, nsP3, capsid, and E2 envelope glycoprotein, and 2 were mutations in the 3' untranslated genome region. Comparisons with the genomic sequences of IAB and other IC epizootic VEE virus strains revealed that only one of the seven amino acid changes associated with the 1992 emergence, a threonine-to-methionine change at position 360 of the nsP3 protein, accompanied another VEE virus emergence event. Two changes in the E2 envelope glycoprotein region believed to include the major antigenic determinants, both involving replacement of uncharged residues with arginine, are also candidates for epizootic determinants.  相似文献   

7.
Venezuelan equine encephalitis (VEE) virus antigenic subtypes and varieties are considered either epidemic/epizootic or enzootic. In addition to epidemiological differences between the epidemic and enzootic viruses, several in vitro and in vivo laboratory markers distinguishing the viruses have been identified, including differential plaque size, sensitivity to interferon (IFN), and virulence for guinea pigs. These observations have been shown to be useful predictors of natural, equine virulence and epizootic potential. Chimeric viruses containing variety IAB (epizootic) nonstructural genes with variety IE (enzootic) structural genes (VE/IAB-IE) or IE nonstructural genes and IAB structural genes (IE/IAB) were constructed to systematically analyze and map viral phenotype and virulence determinants. Plaque size analysis showed that both chimeric viruses produced a mean plaque diameter that was intermediate between those of the parental strains. Additionally, both chimeric viruses showed intermediate levels of virus replication and virulence for guinea pigs compared to the parental strains. However, IE/IAB produced a slightly higher viremia and an average survival time 2 days shorter than the VE/IAB-IE virus. Finally, IFN sensitivity assays revealed that only one chimera, VE/IAB-IE, was intermediate between the two parental types. The second chimera, containing the IE nonstructural genes, was at least five times more sensitive to IFN than the IE parental virus and greater than 50 times more sensitive than the IAB parent. These results implicate viral components in both the structural and nonstructural portions of the genome in contributing to the epizootic phenotype and indicate the potential for epidemic emergence from the IE enzootic VEE viruses.  相似文献   

8.
Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas.  相似文献   

9.
Venezuelan equine encephalitis viruses (VEEV) belonging to subtype IC have caused three (1962-1964, 1992-1993 and 1995) major equine epizootics and epidemics. Previous sequence analyses of a portion of the envelope glycoprotein gene demonstrated a high degree of conservation among isolates from the 1962-1964 and the 1995 outbreaks, as well as a 1983 interepizootic mosquito isolate from Panaquire, Venezuela. However, unlike subtype IAB VEEV that were used to prepare inactivated vaccines that probably initiated several outbreaks, subtype IC viruses have not been used for vaccine production and their conservation cannot be explained in this way. To characterize further subtype IC VEEV conservation and to evaluate potential sources of the 1995 outbreak, we sequenced the complete genomes of three isolates from the 1962-1964 outbreak, the 1983 Panaquire interepizootic isolate, and two isolates from 1995. The sequence of the Panaquire isolate, and that of virus isolated from a mouse brain antigen prepared from subtype IC strain P676 and used in the same laboratory, suggested that the Panaquire isolate represents a laboratory contaminant. Some authentic epizootic IC strains isolated 32 years apart showed a greater degree of sequence identity than did isolates from the same (1962-1964 or 1995) outbreak. If these viruses were circulating and replicating between 1964 and 1995, their rate of sequence evolution was at least 10-fold lower than that estimated during outbreaks or that of closely related enzootic VEEV strains that circulate continuously. Current understanding of alphavirus evolution is inconsistent with this conservation. This subtype IC VEEV conservation, combined with phylogenetic relationships, suggests the possibility that the 1995 outbreak was initiated by a laboratory strain.  相似文献   

10.
Venezuelan equine encephalitis virus (VEEV) has been responsible for hundreds of thousands of human and equine cases of severe disease in the Americas. A passive surveillance study was conducted in Peru, Bolivia and Ecuador to determine the arboviral etiology of febrile illness. Patients with suspected viral-associated, acute, undifferentiated febrile illness of <7 days duration were enrolled in the study and blood samples were obtained from each patient and assayed by virus isolation. Demographic and clinical information from each patient was also obtained at the time of voluntary enrollment. In 2005–2007, cases of Venezuelan equine encephalitis (VEE) were diagnosed for the first time in residents of Bolivia; the patients did not report traveling, suggesting endemic circulation of VEEV in Bolivia. In 2001 and 2003, VEE cases were also identified in Ecuador. Since 1993, VEEV has been continuously isolated from patients in Loreto, Peru, and more recently (2005), in Madre de Dios, Peru. We performed phylogenetic analyses with VEEV from Bolivia, Ecuador and Peru and compared their relationships to strains from other parts of South America. We found that VEEV subtype ID Panama/Peru genotype is the predominant one circulating in Peru. We also demonstrated that VEEV subtype ID strains circulating in Ecuador belong to the Colombia/Venezuela genotype and VEEV from Madre de Dios, Peru and Cochabamba, Bolivia belong to a new ID genotype. In summary, we identified a new major lineage of enzootic VEEV subtype ID, information that could aid in the understanding of the emergence and evolution of VEEV in South America.  相似文献   

11.
We compared the alpha/beta interferon (IFN-α/β) sensitivities of the TC-83 vaccine strain and 24 enzootic and epizootic Venezuelan equine encephalitis (VEE) isolates. The IFN-resistant or -sensitive phenotype correlated well with epizootic or enzootic potential. IFN-α/β resistance of Trinidad donkey (TRD) virus correlated with virulence determinants in the 5′ noncoding region and glycoproteins. Infection of mice lacking a functional IFN system with the IFN-sensitive TC-83 virus resulted in disease equivalent to that produced by the virulent, IFN-resistant TRD virus, further demonstrating that IFN resistance contributes to VEE virus virulence and is a biological marker of epizootic potential.  相似文献   

12.
The RNA genomes of 43 vesicular stomatitis virus (VSV) isolates of the New Jersey (NJ) serotype were T1-ribonuclease fingerprinted to compare the extent of genetic diversity of virus from regions of epizootic and enzootic disease activity. Forty of these viruses were obtained from Central America during 1982 to 1985. The other three were older isolates, including a 1970 isolate from Culex nigripalpus mosquitos in Guatemala, a 1960 bovine isolate from Panama, and a 1976 isolate from mosquitos (Mansonia indubitans) in Ecuador. The data indicate that extensive genetic diversity exists among virus isolates from this predominantly enzootic disease zone. Six distinct T1 fingerprint groups were identified for the Central American VSV NJ isolates from 1982 to 1985. The 1960 VSV NJ isolate from Panama and the 1976 isolate from Ecuador formed two additional distinct fingerprint groups. This finding is in sharp contrast to the relatively close genetic relationship existing among VSV NJ isolates obtained from predominantly epizootic disease areas of the United States and Mexico during the same period (S. T. Nichol, J. Virol. 61:1029-1036, 1987). In this previous study, RNA genome T1 fingerprint differences were observed among isolates from different epizootics; however, the isolates were all clearly members of one large T1 fingerprint group. The eight T1 fingerprint groups described here for Central American and Ecuadorian viruses are distinct from those characterized earlier for virus isolates from the United States and Mexico and for the common laboratory virus strains Ogden and Hazelhurst. Despite being isolated 14 years earlier, the 1970 insect isolate from Guatemala is clearly a member of one of the 1982 to 1985 Central American virus fingerprint groups. This indicates that although virus genetic diversity in the region is extensive, under certain natural conditions particular virus genotypes can be relatively stably maintained for an extended period. The implications of these findings for the evolution of VSV NJ and epizootiology of the disease are discussed.  相似文献   

13.
Vesicular stomatitis virus (VSV) has been shown previously to be capable of undergoing rapid mutational change during sequential experimental infections in various tissue culture cell systems (J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol, and S. Vandepol, Science 215:1577-1585, 1982). The present study was undertaken to determine the degree of genetic diversity and evolution of the virus under natural infection conditions and to gain insight into the epizootiology of the disease. Between 1982 and 1985, numerous outbreaks of VSV of the New Jersey serotype were reported throughout regions of the United States and Mexico. A T1 RNase fingerprint analysis was performed on the RNA genomes of 43 virus isolates from areas of epizootic and enzootic virus activity. This indicates that virus populations were genetically relatively homogeneous within successive U.S. virus epizootics. The data included virus isolates from different epizootic stages, geographical locations, host animals, and host lesion sites. In contrast, only distant genome RNA T1 fingerprint similarities were observed among viruses of the different U.S. epizootics. However, Mexican viruses isolated before or concurrent with U.S. epizootics had very similar RNA genome fingerprints, suggesting that Mexico may have been the possible origin of virus initiating recent U.S. VSV New Jersey outbreaks. Comparison of T1 fingerprints of viruses with enzootic disease areas revealed a greater extent of virus genetic diversity in these areas relative to that observed in epizootic areas. The evolutionary significance of these findings and their relationship to experimental data on VSV evolution are discussed.  相似文献   

14.
Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas that is responsible for severe, sometimes fatal, disease in humans and horses. We previously described an IRES-based VEE vaccine candidate based up the IE serotype that offers complete protection against a lethal subtype IE VEEV challenge in mice. Here we demonstrate the IRES-based vaccine’s ability to protect against febrile disease in cynomolgus macaques. Vaccination was well tolerated and elicited robust neutralizing antibody titers noticed as early as day 14. Moreover, complete protection from disease characterized by absence of viremia and characteristic fever following aerosolized IE VEEV challenge was observed in all vaccinees compared to control animals, which developed clinical disease. Together, these results highlight the safety and efficacy of IRES-based VEEV vaccine to protect against an endemic, pathogenic VEEV IE serotype.  相似文献   

15.
Mice, guinea pigs, and duck embryo cell cultures were inoculated with known subtypes of Venezuelan equine encephalomyelitis (VEE) virus and the attenuated (TC-83) strain of VEE. With the exception of TC-83, all strains were highly pathogenic for suckling mice by either intracranial or intraperitoneal routes of inoculation used. Virulence for older mice and guinea pigs provided a means to distinguish strains. In addition, virulence or lack of virulence for adult mice or guinea pigs provides a rapid method for separating epizootic subtype IB from TC-83 VEE virus isolates.  相似文献   

16.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.  相似文献   

17.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.  相似文献   

18.
Lee CW  Senne DA  Suarez DL 《Journal of virology》2004,78(15):8372-8381
An outbreak of avian influenza (AI) caused by a low-pathogenic H5N2 type A influenza virus began in Mexico in 1993 and several highly pathogenic strains of the virus emerged in 1994-1995. The highly pathogenic virus has not been reported since 1996, but the low-pathogenic virus remains endemic in Mexico and has spread to two adjacent countries, Guatemala and El Salvador. Measures implemented to control the outbreak and eradicate the virus in Mexico have included a widespread vaccination program in effect since 1995. Because this is the first case of long-term use of AI vaccines in poultry, the Mexican lineage virus presented us with a unique opportunity to examine the evolution of type A influenza virus circulating in poultry populations where there was elevated herd immunity due to maternal and active immunity. We analyzed the coding sequence of the HA1 subunit and the NS gene of 52 Mexican lineage viruses that were isolated between 1993 and 2002. Phylogenetic analysis indicated the presence of multiple sublineages of Mexican lineage isolates at the time vaccine was introduced. Further, most of the viruses isolated after the introduction of vaccine belonged to sublineages separate from the vaccine's sublineage. Serologic analysis using hemagglutination inhibition and virus neutralization tests showed major antigenic differences among isolates belonging to the different sublineages. Vaccine protection studies further confirmed the in vitro serologic results indicating that commercial vaccine was not able to prevent virus shedding when chickens were challenged with antigenically different isolates. These findings indicate that multilineage antigenic drift, which has not been observed in AI virus, is occurring in the Mexican lineage AI viruses and the persistence of the virus in the field is likely aided by its large antigenic difference from the vaccine strain.  相似文献   

19.
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller''s ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study.  相似文献   

20.
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ?-propionolactone (?-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号