共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng M Ximenes E Ladisch MR Mosier NS Vermerris W Huang CP Sherman DM 《Biotechnology and bioengineering》2012,109(2):398-404
In the first part of our work, we combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. Hydrolysis experiments coupled with chemical analysis of the different fractions of corn stover showed significant differences in cell wall structure before and after liquid hot water pretreatment. The extent of enzyme hydrolysis followed the sequence rind < leaves < pith with 90% conversion of cellulose to glucose in 24 h in the best cases. Since similar lignin contents remained after liquid hot water pretreatment of leaves, rind, and pith, our results indicated that the amount of lignin alone is not sufficient to explain the different enzymatic hydrolysis characteristics of the fractions. While the role of structural characteristics on enzyme hydrolysis of cell walls is measured as described in part I, the SEM images presented in this part II of our work show that sugar yields from enzymatic hydrolysis of corn fractions correlate with changes in plant cell wall structure both before and after liquid hot water pretreatment. 相似文献
2.
3.
Motoki T Sugiura Y Matsumoto Y Tsuji T Kubota S Takigawa M Gohda E 《Journal of cellular biochemistry》2008,104(4):1465-1476
Carboxylic acids have various biological activities and play critical roles in cellular metabolic pathways such as the tricarboxylic acid (TCA) cycle. It has been shown that some carboxylic acids induce cell proliferation and production of cytokines or growth factors. However, there have been no reports on effects of carboxylic acids on hepatocyte growth factor (HGF) expression. In this study, we found that only maleic acid among various carboxylic acids examined markedly induced HGF production from human dermal fibroblasts. Maleic acid also induced HGF production from human lung fibroblasts and neuroblastoma cells. The stimulatory effect was accompanied by upregulation of HGF gene expression. Increase in phosphorylation of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) but not in phosphorylation of p38 was observed from 6 h and up to 24 h after maleic acid addition. The ERK kinase inhibitor PD98059 and the JNK inhibitor SP600125 potently inhibited maleic acid-induced HGF production, while the p38 inhibitor SB203580 did not significantly inhibit the production. The protein synthesis inhibitor cycloheximide completely inhibited upregulation of HGF mRNA induced by maleic acid but superinduced HGF mRNA expression upregulated by 12-O-tetradecanoylphorbol 13-acetate (TPA). These results suggest that maleic acid indirectly induced HGF expression from human dermal fibroblasts through activation of ERK and JNK and that de novo protein synthesis is required for maleic acid-induced upregulation of HGF mRNA. 相似文献
4.
5.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance. 相似文献
6.
Zhang YH Ding SY Mielenz JR Cui JB Elander RT Laser M Himmel ME McMillan JR Lynd LR 《Biotechnology and bioengineering》2007,97(2):214-223
Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery. 相似文献
7.
Zeng M Ximenes E Ladisch MR Mosier NS Vermerris W Huang CP Sherman DM 《Biotechnology and bioengineering》2012,109(2):390-397
Lignin content, composition, distribution as well as cell wall thickness, structures, and type of tissue have a measurable effect on enzymatic hydrolysis of cellulose in lignocellulosic feedstocks. The first part of our work combined compositional analysis, pretreatment and enzyme hydrolysis for fractionated pith, rind, and leaf tissues from a hybrid stay-green corn, in order to identify the role of structural characteristics on enzyme hydrolysis of cell walls. The extent of enzyme hydrolysis follows the sequence rind < leaves < pith with 90% conversion of cellulose to glucose in 24 h in the best cases. Physical fractionation of corn stalks or other C(4) grasses into soft and hard tissue types could reduce cost of cellulose conversion by enabling reduced enzyme loadings to hydrolyze soft tissue, and directing the hard tissue to other uses such as thermal processing, combustion, or recycle to the land from which the corn was harvested. 相似文献
8.
In electron microscopic observation, neither wax nor cuticle was observed on the outermost layers of callus tissues. Chemical estimation of wax in the callus surface was attempted by thin-layer chromatography of solvent extracts of callus tissues in comparison with those of barley and rice leaves. Hydrocarbons and free alcohols were detected in lyophilized callus tissues, but no wax esters or ketones were detected. Germination test indicated that germination of spores of Aspergillus oryzae was less favored on hydrophobic membranes than that of spores of Alternaria sp. and Botrytis cinerea.From these results, we inferred that the lack of cuticle and wax in the outermost layer of callus tissues facilitated spore germination and penetration, and A. oryzae, a saprophytic fungus, could also readily penetrate into callus tissues. 相似文献
9.
Azam Jeihanipour Keikhosro Karimi Mohammad J. Taherzadeh 《Biotechnology and bioengineering》2010,105(3):469-476
Pretreatment of high‐crystalline cellulose with N‐methyl‐morpholine‐N‐oxide (NMO or NMMO) to improve bioethanol and biogas production was investigated. The pretreatments were performed at 90 and 120°C for 0.5–15 h in three different modes, including dissolution (85% NMO), ballooning (79% NMO), and swelling (73% NMO). The pretreated materials were then enzymatically hydrolyzed and fermented to ethanol or anaerobically digested to biogas (methane). The pretreatment at 85% NMO, 120°C and 2.5 h resulted in 100% yield in the subsequent enzymatic hydrolysis and around 150% improvement in the yield of ethanol compared to the untreated and water‐treated material. However, the best results of biogas production were obtained when the cellulose was treated with swelling and ballooning mode, which gave almost complete digestion in 15 days. Thus, the pretreatment resulted in 460 g ethanol or 415 L methane from each kg of cellulose. Analysis of the structure of treated and untreated celluloses showed that the dissolution mode can efficiently convert the crystalline cellulose I to cellulose II. However, it decreases the water swelling capacity of the cellulose. On the other hand, swelling and ballooning modes in NMO treatment were less efficient in both water swelling capacity and cellulose crystallinity. No cellulose loss, ambient pressure, relatively moderate conditions, and high efficiency make the NMO a good alternative for pretreatment of high‐crystalline cellulosic materials. Biotechnol. Bioeng. 2010; 105: 469–476. © 2009 Wiley Periodicals, Inc. 相似文献
10.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid. 相似文献
11.
A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway
下载免费PDF全文

Thalita J. Bondancia Luiz Henrique C. Mattoso José M. Marconcini Cristiane S. Farinas 《Biotechnology progress》2017,33(4):1085-1095
The feasibility of integration of cellulosic ethanol production with the manufacture of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) was evaluated using eucalyptus cellulose pulp as feedstock and employing the biochemical route alone. For the enzymatic hydrolysis step, experimental central composite design (CCD) methodology was used as a tool to evaluate the effects of solids loading (SL) and enzymatic loading (EL) on glucose release and cellulose conversion. Glucose concentrations from 45 to 125 g/L were obtained after 24 h, with cellulose conversions from 35 to 96%. Validation of the statistical model was performed at SL of 20% and EL of 10 mg protein/g, which was defined by the desirability function as the optimum condition. The sugars released were used for the production of ethanol by Saccharomyces cerevisiae, resulting in 62.1 g/L ethanol after 8 h (yield of 95.5%). For all the CCD experimental conditions, the residual solids presented CNF characteristics. Moreover, the use of a new strategy with temperature reduction from 50 to 35°C after 24 h of enzymatic hydrolysis enabled CNC to be obtained after 144 h. The CNC showed a crystallinity index of 83%, length of 260 nm, diameter of 15 nm, and aspect ratio (L/D) of 15. These characteristics are suitable for many applications, such as reinforcement in polymeric materials and other lower volume higher value bio‐based products. The findings indicate the viability of obtaining ethanol and CNC using the biochemical route exclusively, potentially contributing to the future implementation of forest biorefineries. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1085–1095, 2017 相似文献
12.
The kinetics of the hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow fiber reactor can be modeled in terms of a three‐parameter rate expression. This rate expression consists of the product of a two‐parameter rate expression for the hydrolysis reaction itself (which is of the general Michaelis–Menten form) and a first‐order rate expression for deactivation of the enzyme. Optimum operating conditions correspond to 30°C and buffer pH values of 7.0 during both immobilization of the enzyme and the hydrolysis reaction. Under these conditions, the total fatty acid concentration in the effluent oil stream for a fluid residence time of 4 h is approximately 1.6 M. This concentration corresponds to hydrolysis of approximately 50% of the glyceride bonds present in the feedstock corn oil. The fatty acid of primary interest in the effluent stream is linoleic acid. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 568–579, 1999. 相似文献
13.
Hyon Hee Yoon 《Biotechnology and Bioprocess Engineering》1997,2(2):101-104
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose
was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition
were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid,
and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH
5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with
that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could
withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’
activity. 相似文献
14.
Jean‐Michel Hatt Marcus Clauss Ricarda Gisler Annette Liesegang Marcel Wanner 《Zoo biology》2005,24(2):185-191
Digestive strategies have been recognized to be a key factor for healthy growth in juvenile Galapagos giant tortoises (Geochelone nigra). The aim of present study was to investigate digestive coefficients with special regard to fiber fractions. Four captive bred Galapagos giant tortoises 4–5 years of age were fed a controlled diet for 32 days. The diet consisted of 77% hay, 15% tortoise pellets, and 8% apples on a dry matter basis. On a dry matter basis diet analysis showed: 95.7% organic matter, 11.3% crude protein, 20.5% crude fiber, 22.6% acid detergent fiber, 5.0% acid detergent lignin, and 17.6% cellulose. Based on total fecal collection during 7 days average dry matter digestibilities were calculated: 65% for dry matter, 67% for organic matter, 63% for crude protein, 55% for crude fiber, 49% for acid detergent fiber, 41% for acid detergent lignin, 54% for cellulose. An increase in crude fiber content resulted in a reduced digestibility in comparative evaluations of data for different tortoise species, and in a comparison of tortoises and mammalian hindgut fermenters. Compared to some mammalian hindgut‐fermenting herbivore species (domestic horses, Asian elephants, Indian rhinoceroses) on a diet of hay and concentrates, the juvenile Galapagos giant tortoises showed a digestion of similar efficiency. If a reduction in dietary digestibility is warranted in juvenile Galapagos giant tortoises, it is concluded that dietary fiber levels should be increased and it is proposed that crude fiber levels of 30–40% on a dry matter basis should be achieved. Zoo Biol 24:185–191, 2005. © 2005 Wiley‐Liss, Inc. 相似文献
15.
Chandra RP Au-Yeung K Chanis C Roos AA Mabee W Chung PA Ghatora S Saddler JN 《Biotechnology progress》2011,27(1):77-85
To try to improve hydrolysis yields at elevated solids loadings, a comparison was made between batch and fed-batch addition of fresh substrate at the initial and later phases of hydrolysis. Both ethanol (EPCS) and steam-pretreated corn stover (SPCS) substrates were tested at low (5 FPU) and high (60 FPU) loadings of cellulase per gram of cellulose. The fed-batch addition of fresh substrate resulted in a slight decrease in hydrolysis yields when compared with the corresponding batch reactions. A 72-h hydrolysis of the SPCS substrate resulted in a hydrolysis yield of 66% compared with 51% for the EPCS substrate. When the enzyme adsorption and substrate characteristics were assessed during batch and fed-batch hydrolysis, it appeared that the irreversible binding of cellulases to the more recalcitrant original substrate limited their access to the freshly added substrate. After 72-h hydrolysis of the SPCS substrate at low enzyme loadings, ~40-50% of the added cellulases were desorbed into solution, whereas only 20% of the added enzyme was released from the EPCS substrate. Both simultaneous and sequential treatments with xylanases and cellulases resulted in an up to a 20% increase in hydrolysis yields for both substrates at low enzyme loading. Simons' stain measurements indicated that xylanase treatment increased cellulose access, thus facilitating cellulose hydrolysis. 相似文献
16.
Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process 总被引:1,自引:0,他引:1
The biochemical conversion of cellulosic biomass to ethanol, a promising alternative fuel, can be carried out efficiently and economically using the simultaneous saccharification and fermentation (SSF) process. The SSF integrates the enzymatic hydrolysis of cellulose to glucose, catalyzed by the synergistic action of cellulase and beta-glucosidase, with the fermentative synthesis of ethanol. Because the enzymatic step determines the ethanol. Because the enzymatic step determines the availability of glucose to the ethanologenic fermentation, the kinetic of cellulose hydrolysis by cellulase and beta-glucosidase and the susceptibility of the two enzymes to inhibition by hydrolysis and fermentation products are of significant importance to the SSF performance and were investigated under realistic SSF conditions. A previously developed SSF mathematical model was used to conceptualize the depolymerization of cellulose. The model was regressed to the collected data to determine the values of the enzyme parameters and was found to satisfactorily predict the kinetics of cellulose hydrolysis. Cellobiose and glucose were identified as the strongest inhibitors of cellulase and beta-glucosidase, respectively. Experimental and modeling results are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. (c) 1993 Wiley & Sons, Inc. 相似文献
17.
双酶法制备玉米皮膳食纤维的研究 总被引:1,自引:0,他引:1
采用蛋白酶和淀粉酶结合水解制备玉米皮膳食纤维,通过正交试验确立了玉米皮膳食纤维的双酶法制备工艺。双酶法制备的玉米皮膳食纤维的产率为59.4%,膳食纤维的蛋白质量分数为0.82%,淀粉质量分数为1.42%,灰分为0.4%,水分质量分数为8.6%,持水力为5.9±0.4 g.g-1。 相似文献
18.
细菌纤维素(bacterial cellulose,BC)是一种由微生物产生的具有纳米结构的纤维素材料。BC生产的培养基成本偏高,限制了其规模化工业生产和商业应用。为开发新的BC生产原料,通过Cellic CTec 2纤维素酶直接水解硫酸盐和亚硫酸盐两种纸浆废料获得可发酵糖,以其成功制备出BC并研究比较了两种酶解液对BC产量和结构的差异。结果表明,硫酸盐纸浆废料获得的BC产量最高,达9.0 g/L,比亚硫酸盐纸浆废料的7.7 g/L高了17%。两种原料制备的BC膜的结晶度分别为61%和66%,比葡萄糖制备的(78%)低。红外光谱分析表明,不同碳源制备的BC膜的成分没有明显差异。 相似文献
19.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013 相似文献
20.