首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methionine aminopeptidase that specifically removes methionine residues from peptides with amino-terminal sequences of Met-Ala-, Met-Val-, Met-Ser-, Met-Gly-, and Met-Pro- but not Met-Leu- or Met-Lys- has been isolated to homogeneity from porcine liver by a procedure involving five chromatographic steps. The enzyme, whose specificity matches that predicted for the entity responsible for the co-translational amino-terminal processing of nascent polypeptide chains, has a measured molecular mass of 70,000 Da by SDS-polyacrylamide electrophoresis and 67,000 Da by gel chromatography (under nondenaturing conditions), suggesting the native molecule is a monomer. It is activated by Co2+ and inhibited by beta-mercaptoethanol and EDTA. With octapeptide substrates related to the amino-terminal portion of the beta-chain of human hemoglobin (with a histidine in position 3), the enzyme had a pH optimum of 6.0. With a synthetic peptide devoid of histidine, it showed no pH dependence from 6.0 to 8.0. This sensitivity may be due to the propensity of peptides with histidine in the third position to bind divalent cations such as Co2+. The measured Km and kappa cat values were affected by residues in the second position. The peptide corresponding to the natural sequence (Met-Val-His-) gave a kappa cat/Km value of 260 mM-1 s-1; substitution of alanine in the second position raised the kappa cat/Km to 1523 mM-1 s-1, but substitution of proline lowered the value to 130. The effects are primarily on the kappa cat. The substitution of proline (for histidine) in the third position, the mutation found in hemoglobin Long Island, prevents the removal of the methionine residue, as occurs with the mutant protein. The porcine liver enzyme is similar to methionine aminopeptidases isolated from Escherichia coli, Salmonella typhimurium, and yeast in that it also is stimulated by Co2+. However, it is much larger than these enzymes and differs somewhat in specificity, particularly with the yeast enzyme.  相似文献   

2.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

3.
The putative intermediate dienol (2) in the steroid isomerase (KSI) catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) has been independently generated and tested as a substrate for KSI. At pH 7, dienol 2 is converted by KSI to a mixture of 1 (46%) and 3 (54%). The apparent second-order rate constant for reaction of 2 with KSI to produce 3 (kappa cat/Km = 2.3 x 10(8) M-1 s-1) is similar to that for reaction of 1 with KSI (kappa cat/Km = 2.1 x 10(8) M-1 s-1), demonstrating that 2 is kinetically competent. Isomerization of 1 by KSI in D2O gives only 5% of solvent deuterium incorporated into the product 3. When 2 reacts with KSI in D2O, and the product 3 is isolated (from direct reaction of 2 and from subsequent conversion of the 1 initially formed), ca. 80 atom % deuterium is located at C-6 beta, confirming that protonation of the dienol by KSI occurs at the same face as the proton transfer in the KSI catalyzed reaction of 1 to 3.  相似文献   

4.
The specificity of the p15 proteinase of myeloblastosis-associated virus (MAV) was tested with nonviral high molecular weight substrates and with synthetic peptides. Peptides with sequences spanning known cleavage sites in viral polyproteins of Rous sarcoma virus (RSV) and avian leukemia viruses, as well as in BSA and HSA, were synthesized, and the rate of their cleavage by the MAV proteinase was compared. Synthetic peptides require for successful cleavage at least 4 residues at the N-terminal side and 3 residues at the C-terminal side. The proteinase shows a preference for hydrophobic residues with bulky side chains (Met, Tyr, Phe) in P3, although Arg and Gln can also be accepted. Small hydrophobic residues are required in P2 and P2', and large hydrophobic residues (Tyr, Met, Phe/p-nitro-Phe) are preferred in both P1 and P1'. The difference between the specificity of the p15 proteinase and that of the HIV-1 proteinase mostly pertains to position P2' of the substrate, where bulkier side chains are accepted by the HIV-1 proteinase (Richards et al., 1990). A good chromogenic substrate for the MAV and RSV proteinases was developed and used to further characterize the MAV proteinase activity with respect to ionic strength and pH. The activity of the proteinase is strongly dependent on ionic strength and pH. Both the kcat and Km values contribute to a higher cleavage efficiency at higher salt concentrations and show a bell-shaped pH dependence curve with a sharp maximum at pH 5.5 (kcat) and 6.5 (Km).  相似文献   

5.
The 99 residue human immunodeficiency virus type 1 proteinase has been expressed in Escherichia coli as part of an autocleaving fusion protein. Expression of the fusion protein is toxic to the host cells, however yields of the released proteinase have been improved by optimising induction nad harvest times to increase culture biomass, and decrease degradation of the proteinase. Soluble proteinase was extracted from these cells by a simple and highly efficient three step process. N-terminal sequence analysis confirms that the enzyme preparation is highly pure and correctly autoprocessed. The proteinase cleaves peptide substrate IGCTLNFPISPIETV between F and P at pH 6.0 with a Km of 310 microM and a Kcat of 14s-1. The enzyme is sensitive to its ionic environment, showing stimulation of activity at high salt concentrations, and shows a pH optimising 5.5.  相似文献   

6.
Multicatalytic, High-Mr Endopeptidase from Postmortem Human Brain   总被引:2,自引:0,他引:2  
The main high molecular weight (650K) multicatalytic endopeptidase has been purified from postmortem human cerebral cortex. As in other tissues and species, this enzyme is composed of several subunits of 24-31K and has three distinct catalytic activities, as shown by the hydrolysis of the fluorogenic tripeptide substrates glutaryl-Gly-Gly-Phe-7-amido-4-methylcoumarin, benzyloxycarboxyl-Gly-Gly-Arg-7-amido-4-methylcoumarin, and benzyloxycarboxyl-Leu-Leu-Glu-2-naphthylamide with hydrophobic (Phe), basic (Arg), and acidic (Glu) residues in the P1 position, respectively. These activities are distinguishable by their differential sensitivity to peptidase inhibitors. The enzyme hydrolysed neuropeptides at pH 7.4 at multiple sites with widely differing rates, ranging from 113 nmol/min/mg for substance-P, down to 2 nmol/min/mg for bradykinin. The enzyme also had proteinase activity as shown by the hydrolysis of casein. For the hydrolysis of the Tyr5-Gly6 bond in luteinizing hormone-releasing hormone, the Km was 0.95 mM and the specificity constant (kcat/Km) was 4.7 X 10(3) M-1 s-1. The bond specificity of the enzyme at neutral pH was determined by identifying the degradation products of 15 naturally occurring peptide sequences. The bonds most susceptible to hydrolysis had a hydrophobic residue at P1 and either a small (e.g., -Gly or -NH2) or hydrophobic residue at P'1. Hydrolysis of -Glu-X bonds (most notably in neuropeptide Y) and the Arg6-Arg7 bond in dynorphin peptides was also seen. Thus the three activities identified with fluorogenic substrates appear to be expressed against oligopeptides.  相似文献   

7.
Variation in the kinetic parameters, kcat and Km, with pH has been used to obtain evidence for significant acid-dissociation processes in the hydrolysis of octapeptide substrates by three aspartic proteinases. These substrates are all cleaved at the peptide bond between a Phe (P1) and a p-nitroPhe (P1') residue resulting in a shift in absorbance at 300 nm that facilitates kinetic measurements. The substrates differ in the amino-acid residues present in the P3 and the P2 positions. Porcine pepsin, calf chymosin, and the aspartic proteinase from Endothia parasitica all show pH dependencies that imply that favorable or unfavorable interactions can occur with the S3 or S2 areas of the enzyme-active site. Examination of the crystallographically determined structure of the E. parasitica proteinase and consideration of the amino-acid sequence differences between the three enzymes suggests that the origin of the pH effects arises from favorable interactions between Glu-13 (COO-) of pig pepsin and Thr (OH) or His (ImH+) in P3 of a substrate. Similarly, Lys-220 (NH3+) of chymosin and a Glu (COO-) in P2 of a substrate may produce a favorable interaction and Asp-77 (COO-) of E. parasitica proteinase and a Glu (COO-) in P2 of a substrate may produce an unfavorable interaction. These results lead to possible explanations for subtle specificity differences within a family of homologous enzymes, and suggest loci for study by site-directed mutagenesis.  相似文献   

8.
Pre-steady-state and steady-state kinetics of the papain (EC 3.4.22.2)-catalyzed hydrolysis of N-alpha-carbobenzoxyglycine p-nitrophenyl ester (ZGlyONp) have been determined between pH 3.0 and 9.5 (I = 0.1 M) at 21 +/- 0.5 degrees C. The results are consistent with the minimum three-step mechanism involving the acyl X enzyme intermediate E X P: (Formula: see text). The formation of the E X S complex may be regarded as a rapid pseudoequilibrium process; the minimum values for k+1 are 8.0 microM-1 s-1 (pH less than or equal to 3.5) and 0.40 microM-1 s-1 (pH greater than 6.0), and that for k-1 is 600 s-1 (pH independent). The pH profile of k+2/Ks (= kcat/Km; Ks = k-1/k+1) reflects the ionization of two groups with pK' values of 4.5 +/- 0.1 and 8.80 +/- 0.15 in the free enzyme. The pH dependence of k+2 and k+3 (measured only at pH values below neutrality) implicates one ionizing group in the acylation and deacylation step with pK' values of 5.80 +/- 0.15 and 3.10 +/- 0.15, respectively. As expected from the pH dependences of k+2/Ks (= kcat/Km) and k+2, the value of Ks changes with pH from 7.5 X 10(1) microM (pH less than or equal to 3.5) to 1.5 X 10(3) microM (pH greater than 6.0). Values of k-2 and k-3 are close to zero over the whole pH range explored (3.0 to 9.5). The pH dependence of kinetic parameters indicates that at acid pH values (less than or equal to 3.5), the k+2 step is rate limiting in catalysis, whereas for pH values higher than 3.5, k+3 becomes rate limiting. The observed ionizations probably reflect the acid-base equilibria of residues involved in the catalytic diad of papain, His159-Cys25. Comparison with catalytic properties of ficins and bromelains suggests that the results reported here may be of general significance for cysteine proteinase catalyzed reactions.  相似文献   

9.
A novel type of fluorescence resonance energy transfer (FRET) combinatorial libraries were used for the characterization of alkaline serine proteinase produced from Rubrivivax gelatinosus KDDS1. This enzyme was the first serine proteinase characterized from photosynthetic bacteria. The proteinase was found to prefer Met and Phe at the P1 position, Ile and Lys at the P2 position, and Arg and Phe at the P3 position. To date, no serine proteinase has exhibited a preference for Met at the P1 position. Thus, the alkaline serine proteinase from R. gelatinosus KDDS1 is very unique in terms of substrate specificity. A highly sensitive substrate, Boc-Arg-Ile-Met-MCA, was synthesized for kinetic study based on the results reported here. The optimum pH of the enzyme for this substrate was pH 10.7, and the values of kcat, Km, and kcat/Km were 23.7 s(-1), 15.4 microM, and 1.54 microM(-1) s(-1), respectively.  相似文献   

10.
Three synthetic substrates H-Arg-NH-Mec, Bz-Arg-NH-Mec and H-Cit-NH-Mec (Bz, Benzoyl; NH-Mec, 4-methylcoumaryl-7-amide; Cit, citrulline) were used to characterize specificity requirements for the P1-S1 interaction of cathepsin H from rat liver. From rapid equilibrium kinetic studies it was shown that Km, kcat and the specificity constants kcat/Km are quite similar for substrates with a free alpha-amino group. In contrast, a 25-fold decrease of kcat/Km was observed for the N-terminal-blocked substrate Bz-Arg-NH-Mec. The activation energies for H-Arg-NH-Mec and Bz-Arg-NH-Mec were determined to be 37 kJ/mol and 55 kJ/mol, respectively, and the incremental binding energy delta delta Gb of the charged alpha-amino group was estimated to -8.1 kJ/mol at pH 6.8. The shown preference of cathepsin H for the unblocked substrates H-Arg-NH-Mec and H-Cit-NH-Mec was further investigated by inspection of the pH dependence of kcat/Km. The curves of the two substrates with a charged alpha-amino group showed identical bell-shaped profiles which both exhibit pKa1 and pKa2 values of 5.5 and 7.4, respectively, at 30 degrees C. The residue with a pKa1 of 5.5 in the acid limb of the activity profile of H-Arg-NH-Mec was identified by its ionization enthalpy delta Hion = 21 kJ/mol as a beta-carboxylate or gamma-carboxylate of the enzyme, whereas the residue with a pKa2 of 7.4 was assigned to the free alpha-amino group of the substrate with a delta Hion of 59 kJ/mol. Bz-Arg-NH-Mec showed a different pH-activity profile with a pKa1 of 5.4 and a pKa2 of 6.6 at 30 degrees C. Cathepsin H exhibits no preference for a basic P1 side chain as has been shown by the similar kinetics of H-Arg-NH-Mec and the uncharged, isosteric substrate H-Cit-NH-Mec. In summary, specific interactions of an anionic cathepsin H active site residue with the charged alpha-amino group of substrates caused transition state stabilization which proves the enzyme to act preferentially as an aminopeptidase.  相似文献   

11.
Hepatitis A virus (HAV) 3C proteinase is responsible for processing the viral precursor polyprotein into mature proteins. The substrate specificity of recombinant hepatitis A 3C proteinase was investigated using a series of synthetic peptides representing putative polyprotein junction sequences. Two peptides, corresponding to the viral polyprotein 2B/2C and 2C/3A junctions, were determined to be cleaved most efficiently by the viral 3C proteinase. The kcat/Km values determined for the hydrolysis of a further series of 2B/2C peptides, in which C-terminal and N-terminal amino acids were systematically removed, revealed that P4 through P2' amino acids were necessary for efficient substrate cleavage. The substitution of Ala for amino acids in P1 and P4 positions decreased the rate of peptide hydrolysis by 100- and 10-fold, respectively, indicating that the side chains of Gln in P1 and Leu in P4 are important determinants of substrate specificity. Rates of hydrolysis measured for other P1- and P4-substituted peptides indicate that S1 is very specific for the Gln side chain whereas S4 requires only that the amino acid in P4 be hydrophobic. A continuous fluorescence quench assay was developed, allowing the determination of kcat/Km dependence on pH. The pH rate profile suggests that catalyzed peptide hydrolysis is dependent on deprotonation of a reactive group having a pKa of 6.2 (+/- 0.2). The results of tests with several proteinase inhibitors indicate that this cysteine proteinase, like other picornaviral 3C proteinases, is not a member of the papain family.  相似文献   

12.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

13.
M Farnum  M Palcic  J P Klinman 《Biochemistry》1986,25(8):1898-1904
The pH dependence of steady-state parameters for [1,1-1H2]- and [1,1-2H2]benzylamine oxidation and of tritium exchange from [2-3H]dopamine has been measured in the bovine plasma amine oxidase reaction. Deuterium isotope effects on kcat/Km for benzylamine are observed to be constant, near the intrinsic value of 13.5, over the experimental pH range, indicating that C-H bond cleavage is fully rate limiting for this parameter. As a consequence, pKa values derived from kcat/Km profiles, 8.0 +/- 0.1 (pK1) and 9.0 +/- 0.16 (pKs), can be ascribed to microscopic pKa values for the ionization of an essential active site residue (EB1) and substrate, respectively. Profiles for kcat and Dkcat show that EB1 undergoes a perturbation from 8.0 to 5.6 +/- 0.3 (pK1') in the presence of substrate; additionally, a second ionization, pK2 = 7.25 +/- 0.25, is observed to mediate but not be essential for enzyme reoxidation. The pH dependence of the ratio of tritium exchange to product formation for dopamine also indicates base catalysis with a pKexch = 5.5 +/- 0.01, which is within experimental error of pK1'. We conclude that the data presented herein support a single residue catalyzing both substrate oxidation and exchange, consistent with recent stereochemical results that implicate a syn relationship between these processes [Farnum, M., & Klinman, J.P. (1985) Fed. Proc., Fed. Am. Soc. Exp. Biol. 44, 1055]. This conclusion contrasts with earlier kinetic data in support of a large rate differential for the exchange of hydrogen from C-1 vs. C-2 of phenethylamine derivatives [Palcic, M.M., & Klinman, J.P. (1983) Biochemistry 22, 5957-5966].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species (Mangold, J.B., and Klinman, J.P. (1984) J. Biol. Chem. 259, 7772-7779). Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified (Bossard, M.J., and Klinman, J.P. (1986) J. Biol. Chem. 261, 16421-16427). In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover.  相似文献   

15.
In porcine cytosolic aspartate aminotransferase, a dimeric enzyme, the amino-terminal region anchoring onto the neighboring subunit is linked to the adjoining floppy peptide segment (residues 12-47), an integral part of the small domain whose facile movement upon substrate binding is a striking "induced fit" feature of this enzyme. To assess the contribution by the amino-terminal region to small domain movement and protein stability, a series of enzyme derivatives truncated on the amino-terminal side (residues 1-9) was prepared by using oligonucleotide-directed in vitro mutagenesis. Deletion of residues 1-3 showed no effect on catalytic activity and heat stability. Del 1-5 mutant enzyme with an extra methionine at position 5 showed only 43% of the kappa cat value (in the overall transamination) of the wild-type enzyme. Further deletion up to residue 9 resulted in a slight decrease in kappa cat values. Del 1-9 mutant enzyme still retained a kappa cat value of 33% that of wild-type enzyme. Km values for aspartate and 2-oxoglutarate increased sharply upon deletion of residues 1-9. Accordingly, Del 1-9 mutant enzyme showed a striking decrease in the kappa cat/Km value, to only 2% of that for the wild-type enzyme. Deletion of amino-terminal residues 1-9 resulted also in a large decrease in thermostability and in an enhanced susceptibility to limited proteolysis by protease 401, which is known to cleave at Leu20 of the wild-type enzyme. These findings indicate that an increase in the conformational freedom of the floppy segment (residues 12-47) would occur upon the loss of most of the anchorage region, thereby presenting an entropic barrier to conformational changes that facilitate substrate binding with high affinity.  相似文献   

16.
Three thiol proteinases, namely papain, chymopapain and proteinase omega were purified to homogeneity from the latex of Carica papaya L. During the purification procedure, the thiol function of the cysteinyl residues were protected either as mixed disulfides with cysteamine or 2-thiopyridone or as S-sulphenylthiosulfate derivative or after blocking with p-chloromercuribenzoic acid. In marked contrast with earlier publications, chymopapain also was found to be a monothiol proteinase as papain and proteinase omega. The active sites of chymopapain and proteinase omega could not be distinguished from that of papain neither by the analysis of the pH dependence of kcat/Km nor by the examination of the pH dependence of the fluorescence emission spectra.  相似文献   

17.
Bindings of the phospholipase A2 from Trimeresurus flavoviridis to the monodispersed and micellar n-alkylphosphorylcholines (n-CnPC) were studied at 25 degrees C and ionic strength 0.2 by the aromatic CD and tryptophyl fluorescence methods, respectively. The bindings to micelles of the substrate analog were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and that these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of the substrate (monomer) molecules, N = 9-13. The binding constant to the micelle was about 40 times greater than it was to the monodispersed substrate. The binding constant to the micellar substrate analog increased on the binding of Ca2+ to the enzyme and decreased on modification of the N-terminal alpha-NH2 group, whereas the binding to the monodispersed substrate analog was independent of pH, of the Ca2+ binding, and of the chemical modification of the alpha-NH2 group. The kinetics of the hydrolyses of monodispersed and micellar dihexanoylphosphatidylcholines (diC6PC) were studied at 25 degrees C and ionic strength 0.2 by the pH-stat method in the presence of saturating amounts of Ca2+. The catalytic center activity, kappa cat, as well as the binding constant, 1/Km, for the micellar substrate, were found to be much greater than those for the monodispersed substrate. The binding constant, 1/Km, of the monodispersed substrate was independent of pH; this was in good agreement with that of the substrate analog described above. The pH-dependence curve of kappa cat for the monodispersed substrate exhibited two transitions, one below pH 6.5 and the other above pH 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The kinetics of hydrolysis by Pseudomonas aeruginosa elastase at 37 degrees C and pH 7.3 of 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine is compatible with nonproductive substrate inhibition, i.e., v = V.[S]/(Km + [S] + [S]2/K1), and the values of Km, Ki, and kappa cat are 1.4 mM, 5.0 mM, and 240 s-1, respectively. Product inhibition experiments are in agreement with an ordered release of product, with L-phenylalanyl-L-phenylalanine, the amino-containing product, being released first from the elastase.product complex. The values of Ki for L-phenylalanyl-L-phenylalanine and 3-(2-furyl)acryloyl-glycine are 1.5 and 4.0 mM, respectively. Kinetic experiments indicate that the second molecule of substrate combines with elastase.substrate to form a dead-end elastase . (substrate)2 complex.  相似文献   

19.
N Ahn  J P Klinman 《Biochemistry》1983,22(13):3096-3106
Dopamine beta-monooxygenase catalyzes a reaction in which 2 mol of protons are consumed for each turnover of substrate. Studies of the pH dependence of initial rate parameters (Vmax and Vmax/Km) and their primary hydrogen isotope effects show that at least two ionizable residues are involved in catalysis. One residue (B1, pK = 5.6-5.8) must be protonated prior to the carbon-hydrogen bond cleavage step, implying a role for general-acid catalysis in substrate activation. A second protonated residue (B2, pK = 5.2-5.4) facilitates, but is not required for, product release. Recent measurement of the intrinsic isotope effect for dopamine beta-monoxygenase [Miller, S. M., & Klinman, J. P. (1983) Biochemistry (preceding paper in this issue)] allows an analysis of the pH dependence of rate constant ratios and in selected instances individual rate constants. We demonstrate large changes in the rate-determining step as well as an unprecedented inversion in the kinetic order of substrate release from ternary complex over an interval of 2 pH units. Previously, fumarate has been used in dopamine beta-monooxygenase assays because of its property of enzyme activation. Studies of the pH behavior in the presence of saturating concentrations of fumarate have shown two causes of the activation: (i) fumarate perturbs the pK of B1 to pK = 6.6-6.8 such that the residue remains protonated and the enzyme optimally active over a wider pH range; (ii) fumarate decreases the rate of dopamine release from the ternary enzyme-substrate complex, increasing the equilibrium association constant for dopamine binding. Both effects are consistent with a simple electrostatic stabilization of bound cationic charges by the dianionic form of fumarate.  相似文献   

20.
FK506-binding protein (FKBP) catalyzes the cis-trans isomerization of the peptidyl-prolyl amide bond (the PPIase reaction) and is the major intracellular receptor for the immunosuppressive drugs FK506 and rapamycin. One mechanism proposed for catalysis of the PPIase reaction requires attack of an enzyme nucleophile on the carbonyl carbon of the isomerized peptide bond. An alternative mechanism requires conformational distortion of the peptide bond with or without assistance by an enzyme hydrogen bond donor. We have determined the kinetic parameters of the human FKBP-catalyzed PPIase reaction. At 5 degrees C, the isomerization of Suc-Ala-Leu-Pro-Phe-pNA proceeds in 2.5% trifluorethanol with kcat = 600 s-1, Km = 0.5 mM and kcat/Km = 1.2 x 10(6) M-1s-1. The kcat/Km shows little pH dependence between 5 and 10. A normal secondary deuterium isotope effect is observed on both kcat and kcat/Km. To investigate dependence on enzyme nucleophiles and proton donors, we have replaced eight potential catalytic residues with alanine by site-directed mutagenesis. Each FKBP variant efficiently catalyzes the PPIase reaction. Taken together, these data support an unassisted conformational twist mechanism with rate enhancement due in part to desolvation of the peptide bond at the active site. Fluorescence quenching of the buried tryptophan 59 residue by peptide substrate suggests that isomerization occurs in a hydrophobic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号