首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Alcoholic liver disease (ALD) is a major health problem worldwide and hepatic steatosis is an early response to alcohol consumption. Fat and glycogen are two major forms of energy storage in the liver; however, whether glycogen metabolism in the liver impacts alcohol-induced steatosis has been elusive. In this study, we used a mouse model with overexpression of PPP1R3G in the liver to dissect the potential role of glycogen on alcohol-induced fatty liver formation. PPP1R3G is a regulatory subunit of protein phosphatase 1 and stimulates glycogenesis in the liver. Chronic and binge ethanol (EtOH) feeding reduced glycogen level in the mouse liver and such inhibitory effect of EtOH was reversed by PPP1R3G overexpression. In addition, PPP1R3G overexpression abrogated EtOH-induced elevation of serum levels of alanine aminotransferase and aspartate aminotransferase, increase in liver triglyceride concentration, and lipid deposition in the liver. EtOH-stimulated sterol regulatory element-binding protein (SREBP)-1c, a master regulator of lipogenesis, was also reduced by PPP1R3G overexpression in vivo. In AML-12 mouse hepatocytes, PPP1R3G overexpression could relieve EtOH-induced lipid accumulation and SREBP-1c stimulation. In conclusion, our data indicate that glycogen metabolism is closely linked to EtOH-induced liver injury and fatty liver formation.  相似文献   

8.
9.
Rodents fed fish oil showed less obesity with a reduction of triglyceride synthesis in liver, relative to other dietary oils, along with a decrease of mature form of sterol regulatory element binding protein-1 (SREBP-1) and activation of peroxisome proliferator-activated receptor alpha (PPARalpha). Decrease of mature SREBP-1 protein by fish oil feeding was due to either inhibition of SREBP-1 proteolytic cascade or to decrease of its mRNA. To clarify its mechanism and relation to antiobesity effect, mice were fed fish oil in a range from 10 to 60 energy percent (en%). Fish oil feeding decreased body weight and fat mass in a dose-dependent manner, in parallel with PPARalpha activation and a decrease of SREBP-1 mRNA. However, compared with 0 en% fish oil feeding, 10 en% fish oil feeding decreased mature SREBP-1 protein by 50% with concomitant decreases of lipogenic genes, while precursor SREBP-1 protein rather increased by 1.3-fold. These data suggest that physiological doses of fish oil feeding effectively decrease expression of liver lipogenic enzymes by inhibiting SREBP-1 proteolytic cascade, while substantial decrease of SREBP-1 expression is observed in its pharmacological doses, and that activation of PPARalpha rather than SREBP-1 decrease might be related to the antiobesity effect of fish oil feeding.  相似文献   

10.
Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to test the hypothesis that the antioxidant polyphenolic extract of green tea, comprised predominantly of epigallocatechin gallate, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g kg(-1) day(-1)) and green tea (300 mg kg(-1) day(-1)) continuously for 4 weeks using an intragastric enteral feeding protocol. Mean body weight gains (approximately 4 g/day) were not significantly different between treatment groups, and green tea extract did not the affect average concentration or the cycling of urine ethanol concentrations (0-550 mg dl(-1) day(-1)). After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (35+/-3 IU/l) by enteral ethanol (114+/-18); inclusion of green tea extract in the diet significantly blunted this increase (65+/-10). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver. While not affecting fat accumulation or inflammation, green tea extract significantly blunted increases in necrosis caused by ethanol. Furthermore, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation and an index of oxidative stress; green tea extract blocked this effect almost completely. TNFalpha protein levels were increased in liver by alcohol; this phenomenon was also blunted by green tea extract. These results indicate that simple dietary antioxidants, such as those found in green tea, prevent early alcohol-induced liver injury, most likely by preventing oxidative stress.  相似文献   

11.
12.
Alcohol-related liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the primary causes of chronic liver disease in western countries. Liver transplantation is currently one of the most efficient approaches to save patients with liver failure, which is often associated with hepatic ischemia-reperfusion (IR) injury. IR injury is exacerbated by hepatic steatosis, yet the mechanism remains elusive. Necroptosis is a form of regulated cell death mediated by receptor-interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like (MLKL) protein, which has been implicated in the pathogenesis of ALD and NAFLD. Though necroptosis plays an important role in IR injury of high fat diet - induced steatotic livers, the role of necroptosis in IR injury of ethanol - induced steototic livers has not been investigated. In the present study, we used chronic plus binge alcohol (Gao-binge) feeding followed by IR surgery to investigate IR liver injury with ethanol-associated steatosis. We found that the levels of key necroptotic proteins MLKL and RIP3 increased in alcohol-fed mouse livers. Moreover, we observed increased liver injury after IR in control diet-fed mice, which was further exacerbated by alcohol feeding based on serum alanine aminotransferase (ALT) levels and TUNEL staining of necrotic cells. Hepatic neutrophil infiltration also increased in alcohol-fed mice after IR surgery. However, deletion of Mlkl did not protect against IR liver injury in alcohol-fed mice compared with matched wild-type mice. In conclusion, alcoholic steatosis promotes IR injury, which seems to be independent of MLKL-mediated necroptosis.  相似文献   

13.
14.
15.
16.
Well-differentiated Reuber H35 rat hepatoma cells in culture maintain a variety of biochemical functions characteristic of hepatocytes [Deschatrette, J., and M. C. Weiss. 1974. Biochimie. 56: 1603-1611]. To demonstrate the suitability of this system as a model for exploring mechanisms of ethanol hepatotoxicity, the following were investigated: 1) ethanol metabolism in whole cells and cell extracts and 2) effects of ethanol exposure on cellular lipid content. Cultures of H35 cells exposed to 10 mm ethanol metabolized the ethanol at rates similar to those reported in rat liver. Under these conditions, soluble alcohol dehydrogenase activity accounted for greater than 87% of total ethanol metabolism. H35 cells exposed to 240 mm ethanol for 3 days contained four times more triacylglycerol and cholesteryl ester than control cells. Total phospholipid and unesterified cholesterol levels were unaffected by ethanol. Neutral lipid content of Chinese hamster ovary cells was unchanged after ethanol exposure. The increased triacylglycerol content of ethanol-treated H35 cells appeared to result from an accelerated rate of conversion of long chain fatty acids into triacylglycerol. Several lines of evidence indicated that alcohol dehydrogenase-mediated ethanol oxidation was critical in promoting increased triacylglycerol content of cultured cells. Since 240 mm ethanol blocked cellular proliferation, long term effects of ethanol were studied at a level of 10 mm, which allowed a nearly normal growth rate. After 7 weeks of continuous exposure, 10 mm ethanol-treated H35 cells contained five times more triacylglycerol than paired controls. The well-differentiated H35 cell appears to be an excellent in vitro model system for studying both short-term and long-term effects of ethanol on liver cells.-Polokoff, M. A., M. Iwahashi, and F. R. Simon. Ethanol treatment increases triacylglycerol and cholesteryl ester content of cultured hepatoma cells.  相似文献   

17.
H Kono  M Fujii  T Sokabe  J Kaneshige 《Enzyme》1979,24(3):142-151
To study the effects of ethanol on liver chronically injured by CCl4, activities of hepatic enzymes related to ethanol oxidation, influences of ethanol on hepatic metabolites, and blood ethanol disappearance were observed. (1) Activities of alcohol dehydrogenase, low- and high-Km aldehyde dehydrogenase, microsomal ethanol-oxidizing system and drug-metabolizing enzyme were remarkably decreased in the injured liver. (2) Increases in lactate/pyruvate and beta-hydroxybutyrate/acetacetate ratios were shown in control liver 2 h after ethanol ingestion. Similar but less pronounced effects of ethanol on the 'redox state' were also seen in rats with chronic liver injury. (3) Delay in ethanol disappearance was not observed until 12 h after ethanol ingestion. The ethanol-induced changes in the redox state in the injured liver were similar to those in controls. Higher ethanol concentrations in blood from rats with chronic liver injury could be related to potentiate the injured liver.  相似文献   

18.
19.
20.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号