首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

2.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

3.
The albedo () of vegetated land surfaces is a key regulatory factor in atmospheric circulation and plays an important role in mechanistic accounting of many ecological processes. This paper examines the influence of the phenological stages of maize (Zea mays) and cowpea (Vigna unguiculata) fields on observed albedo at a tropical site in Ghana. The crops were studied for the first and second planting dates in the year 2002. Crop management was similar for both seasons and measurements were taken from 10 m×10-m plots within crop fields. Four phenological stages were distinguished: (1) emergence, (2) vegetative, (3) flowering, and (4) maturity. measured from two reference surfaces, short grass and bare soil, were used to study the change over the growing seasons. Surface was measured and simulated at sun angles of 15, 30, 45, 60, and 75°. Leaf area index (LAI) and crop height (CH) were also monitored. Generally, increases from emergence to maturity for both planting dates in the maize field but slightly decreases after flowering in the cowpea field. For maize, the correlation coefficient (R) between and LAI equals 0.970, and the R between and CH equals 0.969. Similarly, for cowpea these Rs are 0.988 and 0.943, respectively. A modified albedo model adequately predicted the observed s with an overall R>0.860. The relative difference in surface with respect to the values measured from the two reference surfaces is discussed. Data presented are expected to be a valuable input in agricultural water management, crop production models, eco-hydrological models and in the study of climate effects of agricultural production, and for the parameterization of land-surface schemes in regional weather and climate models.  相似文献   

4.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

5.
Two experiments have been conducted, one in semi-solid Hoagland nutrient medium and the other in shallow pots containing saline soil. N2-fixing bacteria belonging toAzospirillum, Azotobacter, Klebsiella andEnterobacter were inoculated separately on kallar grass grown in semi-solid nutrient medium. It was shown that inoculation affects root proliferation and also results in15N isotopic dilution. The % Ndfa ranged from 47–70 whereas no significant effect on the total nitrogen uptake was observed. The bacterial colonization of the root surface and the presence of enteric bacteria inside the root hair cells is reported. In a soil pot experiment, non-N2-fixingPolypogon monspeliensis was used as a reference plant (control). A treatment receiving a high rate of nitrogen was also used as a non-N2-fixing control.15N-labelled ammonium sulphate at 20 kg N ha–1 and 90 kg N ha–1 was used. The % Ndfa in the aerial parts of kallar grass was 12–15 whenP. monspeliensis was used as reference plant whereas 37–39% Ndfa was estimated when the treatment receiving high nitrogen fertilizer was used as a non-N2-fixing control. These investigations revealed some problems of methodology which are discussed.  相似文献   

6.
The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N2-fixation. The contribution from symbiotic N2-fixation (Ndfa) and litter N (Ndfl) to total plant N in P. phaseoloides was determined in a pot experiment using a 15N cross-labeling technique. For determination of N2-fixation the non-fixing plant Axonopus compressus was used as a reference. The experiment was carried out in a growth chamber during 9 weeks with a sandy soil and 4 rates of ground litter (C/N=16,2.8% N). P. phaseoloides plants supplied with the highest amount of litter produced 26% more dry matter and fixed 23% more N than plants grown in soil with no litter application, but the percentage of Ndfa decreased slightly, but significantly, from 87 to 84%. The litter N uptake was directly proportional to the rate of application and constituted 10% of total plant N at the highest application rate. Additionally, a positive correlation was found between litter N uptake and the amount of fixed N2. The total recovery of litter N in plants averaged 26% at harvest (shoot + root) and was not affected by the quantity added. A parallel incubation experiment also showed that, as an average of all litter levels, 26% of the litter N was present in the inorganic N pool. The amounts of fertilizer and soil N taken up by plants decreased with litter application, probably due to microbial immobilization and denitrification. It is concluded that, within the litter levels studied, litter mineralization will result in a higher amount of N2-fixed by P. phaseoloides.  相似文献   

7.
Summary In a Nigerian soil depleted in available N, fertilizer-N enriched in15N was applied at 25 and 100 kg N/ha to crops of four cowpea and two soybean cultivars. Soil-N availability was estimated with three non-fixing crops, non-nodulating soybean, maize and celosia. With sequential harvests we examined the development of the fixing crops, as well as their nodulation profiles and acetylene reduction activities, and the patterns obtained were correlated with uptake of mineral-N. At low levels of mineral-N, excellent nodulation (up to 580 mg dry weight/plant) and very high acetylene reduction activities (up to 208 μmoles/plant/h) were recorded. Although fertilizer-N utilizations were low, 12% and 28% at 25 and 100 kg N/ha respectively, the lower application had a transient adverse effect on nodule development and the higher application had a long-term adverse effect on nodule formation, nodule development and acetylene reduction activity. Cowpea nodule mass reached maximum levels at early pod-fill except at 100 kg N/ha at which it continued to increase into late podfill. In contrast, soybean nodulation did not peak at any level of N but increased into late pod-fill.  相似文献   

8.
Summary Two consecutive field experiments, using15N and32P, were conducted at the National Corn and Sorghum Research Center, Thailand, to quantify N2 fixed by mungbean, soybean and peanut and to examine effects of the legumes on the yields of succeeding maize and on status of N and P in soils during the following season. An early sorghum, non-nodulating soybean and maize which were used as standard crops in quantifying N2 fixed by mungbean, soybean, and peanut, respectively, gave statistically comparable A-values for soil N though sorghum tended to give lower value than the other crops did. Amounts of fixed N2 were 37.5, 119.0 and 150 kg/ha for mungbean, soybean and peanut, respectively. Plots previously grew legumes yielded higher grain and stover weights and higher N and P uptake of maize than those previously grew maize. There were no significant differences among plots previously grew different legumes. A-values, in most cases, did not differentiate the effects of previous legumes from those of previous maize. However, changes in N and P status of soil, in most cases, were too small to produce A-values changes that were large enough to outrun the experimental errors.  相似文献   

9.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

10.
Two days after exposure of roots to15N labeled N2, partitioning of biologically fixed N into leaves, stems, peduncles, pods, roots and nodules was measured in the early pod development stage of cowpea (Vigna unguiculata (L.). The experimental objective was to determine the quantity of biologically fixed N that is incorporated into vegetative tissue before being mobilized to pods. For the three varieties of cowpea included in the experiment a maximum of 50% of the N, biologically fixed two days earlier, was contained in the pods. The remaining N was distributed throughout the vegetative portion of the plant with at least 30% in stems and leaves which indicates that much of the newly fixed N must cycle through a N pool in these tissues before reaching the pods.  相似文献   

11.
K. D. Subedi  B. L. Ma 《Plant and Soil》2005,273(1-2):189-202
Little information exists on the pattern of nitrogen (N) uptake, remobilization and N use efficiency (NUE) in Leafy and stay-green (SG) maize (Zea mays L.) genotypes. A pot experiment was conducted under controlled nutrition and growing conditions to determine the response of Leafy and SG maize genotypes to different levels of N-deficiency and timing of N supply. Three contrasting maize hybrids, Pioneer 3905 (a conventional hybrid with moderate SG characteristics), Pioneer 39F06 Bt (with a high score of SG trait) and Maizex LF850-RR (with a Leafy trait) were grown in 6 L plastic pots. Five different N treatments [no supply of N until V8 (N1), no supply of N after V8 (N2), no supply of N after silking (N3), no supply of N beyond 3 weeks after silking (N4), and continuous N supply from emergence to physiological maturity (N5; standard check)] were imposed through modified Hoagland solution applied manually. Labeled 15N of 5% 15N2–NH4NO3fertilizer was applied at 3 g per pot at the start of each schedule N treatment. Total amounts of N applied in different treatments were 3.13, 1.32, 1.90, 2.63 and 3.40 g, respectively in N1, N2, N3, N4 and N5. Dry matter, N concentration, 15N (atom% enrichment) and NUE were determined in roots, stalk, leaves and grains at crop maturity. The three contrasting hybrids did not differ in grain yield, total N acquisition, partitioning of 15N and NUE. Restriction of N supply until V8, and from V8 to physiological maturity significantly reduced grain yield and N-uptake in all hybrids. Irrespective of the level of N-deficiency in plant and timing when the labeled fertilizer was applied, the amount of 15N recovered in the matured plant was the same in all N treatments. It has been evident that maize continued to take up N beyond 3 weeks after silking and the later N was applied during the development, the higher proportion of it was partitioned to grains. Of the total 15N uptake, 78% was partitioned to kernels in the N4 treatment compared to only 61% in the control. Our data showed no evidence of differential N uptake, remobilization and NUE in the SG or Leafy hybrids tested, but the timing of N application and level of N-deficiency in plant significantly influenced N uptake, remobilization and N-dynamics in maize.  相似文献   

12.
13.
Inhibition of nitrate uptake by aluminium in maize   总被引:1,自引:0,他引:1  
Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}  相似文献   

14.
Summary Acetylene reducing (N2-fixing) Entero-bacteriaceae have been isolated from activated sludge plants treating waste from the paper and food industries (103 to 106 cells per ml) and from composting plants handling forest waste (105 to 106 cells per g wet weight). Detailed studies on se-lected strains of all taxa showed that: (1) pure cul-tures were able to utilize a range of carbohy-drates, polyols, amino acids and carboxylic acids as sole sources of carbon (2) high levels of nitro-genase were attained during growth with a range of carbon substrates: highest levels (12—66 n mole C2H4.min−1.mg protein−1) were found for glucose and sucrose, variable levels for polyols, and lower levels for citrate and fumarate (1—23 n mole C2H4.min−1.mg protein−1) (3) organic ni-trogen compounds which were utilized as sole sources of nitrogen did not generally repress the synthesis of nitrogenase, although low levels were found for some strains during growth with glu-cosamine. Samples from a laboratory model acti-vated sludge system showed a mean rate of acety-lene reduction corresponding to the fixation of 26 μg N.h−1.1−1, and direct analysis of the in-fluent and effluent waters and sludge showed a net increase in nitrogen. These observations corre-lated with the presence of a population of N2-fix-ing Enterobacteriaceae of ca. 105 cells per ml and pure strains isolated from the system had a mean nitrogenase specific activity of 88 n mole C2H4.min−1.mg protein−1. It is therefore con-cluded that endogenous N2-fixing Enterobacteria-ceae contained in some kinds of industrial waste-waters could successfully be used to diminish the addition of combined nitrogen to activated sludge treatment plants.  相似文献   

15.
Thirty isolates of mungbean Rhizobium were tested for the presence of H2-recycling system. All the isolates were preliminary screened for detecting H2-recycling system in free culture using triphenyltetrazolium chloride reduction as screening procedure. The isolates which reduced the dye rapidly at early stages of growth were found to recycle hydrogen both in vivo as well as in vitro. Nitrogen fixing efficiency of hydrogenase positive, hydrogenase negative isolates and Hup mutants was compared by green house experiments. There was 13–56% increase in dry matter and 21–46% increase in total nitrogen of the plants inoculated with H2-recycling isolates over the plants inoculated with non-recycling isolates. There was reduction in dry matter and total nitrogen content of the plants inoculated with Hup mutants as compared to plants inoculated with wild type strain. The per cent decrease due to inoculation with Hup mutants over wild type strain was 19–22 and 20–26 of dry weight and total nitrogen in plants, respectively.Abbreviations TTC triphenyltetrazolium chloride  相似文献   

16.
The effect of water deficit on nodulation, N2 fixation, photosynthesis, and total soluble sugars and leghemoglobin in nodules was investigated in cowpea and groundnut. Nitrogenase activity completely ceased in cowpea with a decrease in leaf water potential ( leaf) from –0.4 MPa to –0.9 MPa, while in groundnut it continued down to –1.7 MPa. With increasing water stress, the acetylene reduction activity (ARA) declined very sharply in cowpea, but ARA gradually decreased in groundnut. Even with mild water stress ( leaf of 0.2 MPa), nodule fresh weight declined 50% in cowpea partly due to a severe nodule shedding whereas nodule fresh weight declined in groundnut only when leaf decreased by 1.0 MPa. No nodule shedding was noticed even at a higher stress level in groundnut. Photosynthesis and stomatal conductance were also more stable in groundnut than in cowpea under water stress. There was a sharp increase in total soluble sugars and leghemoglobin in the nodules of groundut with water stress, but no definite trend could be found in cowpea.  相似文献   

17.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

18.
Six mutant strains of Rhizobium were isolated after UV treatment which could exhibit nitrogenase activity in Burk's N-free medium without any supplement. The activity ranged between 99.5 and 113 nmol/mg cell dry weight and hour. Two of the parent strains belonged to soybean, and one each to mungbean and Sesbania sp. Both the parent and mutant strains exhibited nitrogenase activity in CS 7 medium. One of the mutants retained its capacity to produce nodules on soybean roots.List of Abbreviations C.D. Critical difference - EMS ethylmethane sulphonate - NTG N-methyl-N-nitro, N-nitrosoguanidine  相似文献   

19.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

20.
The short-term effects of a simulated cattle dung pat on N2 fixation and total uptake of N in a perennial ryegrass/white clover mixture was studied in a container experiment using sheep faeces mixed with water to a DM content of 13%. We used a new 15N cross-labelling technique to determine the influence of dung-pat N on N2 fixation in a grass/clover mixture and the uptake of dung N in grass and clover. The proportion of N in clover derived from N2 fixation (%Ndfa) varied between 88–99% during the 16 weeks following application of the dung. There was no effect of dung on the %Ndfa in clover grown in mixture, whereas the %Ndfa in clover grown in pure stand decreased (nominal 2–3%) after dung application. Dung did not influence the amount of N2 fixed, and the uptake of dung N in grass and clover proceeded at an almost constant rate. After 16 weeks, 10% of the applied dung N was taken up by grass and clover, 57% had been incorporated in the soil by faunal activity and 27% remained in residual dung on the soil surface. The dung N unaccounted for (7%) was probably lost by ammonia volatilisation and denitrification. The uptake of dung N in grass/clover mixtures in the field was similarly followed by using simulated 15N-labelled dung pats. The total dry matter production and N yields increased in the 0–30 cm distance from the edge of the dung patch, but the proportion of clover decreased. Thirteen months after application of the dung 4% of the applied dung N was recovered in the harvested herbage, 78% was recovered from the soil and the residual dung, and 18% was not accounted for. It is concluded that N2 fixation in the dung patch border area in grass/clover mixtures is not influenced directly by the release of N from dung pats in the short term. However the amount of N2 fixed may be reduced, if the growth of clover is reduced in the patch border area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号