首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.  相似文献   

2.
《FEBS letters》2014,588(8):1186-1192
Connexins, a family of transmembrane proteins, are components of both gap junction channels and hemichannels, which mediate the exchange of ions and small molecules between adjacent cells, and between the inside and outside of the cell, respectively. Substantial advancements have been made in the comprehension of the role of gap junctions and hemichannels in coordinating cellular events. In recent years, a plethora of studies demonstrate a role of connexin proteins in the regulation of tissue homeostasis that occurs independently of their channel activities. This is shown in the context of cell growth, adhesion, migration, apoptosis, and signaling. The major mechanisms of these channel-independent activities still remain to be discovered. In this review, we provide an updated overview on the current knowledge of gap junction- and hemichannel-independent functions of connexins, in particular, their effects on tumorigenesis, neurogenesis and disease development.  相似文献   

3.
4.
Gap junctions—clusters of intercellular channels built by connexins (Cx)—are thought to be important for vascular cell functions such as differentiation, control of tone, or growth. In the vascular system, gap junctions can be formed by four different connexins (Cx37, Cx40, Cx43 and Cx45). The permeability of these connexin-formed gap junctions determines the amount of intercellular coupling and can be modulated by several vasoactive substances such as prostacyclin or nitric oxide (NO). We demonstrate here that NO has specific effects on certain connexins. Using two different techniques—injection of a fluorescent dye in single cells as well as detection of the de novoformation of gap junctions by a flow cytometry based technique—we found that NO decreases the functional coupling in Cx37 containing gap junctions whereas it increases the de novoformation of gap junctions containing Cx40. We conclude that NO, in addition to its known vasomotor effects, has a novel role in controlling intercellular coupling resulting in opposing effects depending on the specific connexin expressed in the cells.  相似文献   

5.
Gap junctions--clusters of intercellular channels built by connexins (Cx)--are thought to be important for vascular cell functions such as differentiation, control of tone, or growth. In the vascular system, gap junctions can be formed by four different connexins (Cx37, Cx40, Cx43 and Cx45). The permeability of these connexin-formed gap junctions determines the amount of intercellular coupling and can be modulated by several vasoactive substances such as prostacyclin or nitric oxide (NO). We demonstrate here that NO has specific effects on certain connexins. Using two different techniques--injection of a fluorescent dye in single cells as well as detection of the de novo formation of gap junctions by a flow cytometry based technique--we found that NO decreases the functional coupling in Cx37 containing gap junctions whereas it increases the de novo formation of gap junctions containing Cx40. We conclude that NO, in addition to its known vasomotor effects, has a novel role in controlling intercellular coupling resulting in opposing effects depending on the specific connexin expressed in the cells.  相似文献   

6.
Gop junctions are cell junctions found between most cells and tissues. They contain membrane channels that mediate the cell-to-cell diffusion of ions, metabolites, and small cell signaling molecules. Cell-cell communication mediated by gap junctions has been proposed to have a variety of functions, including roles in regulating events in development, cell differentiation, and cell growth and proliferation. The analysis of these possibilities has been confounded by the fact that there are over a dozen connexin genes encoding polypeptides that make up vertebrate gap junctions. This complexity, coupled with the fact that most cells express multiple connexin isotypes, likely explains why recent studies using reverse genetic and genetic approaches to disrupt connexin gene function have yielded only limited insights into the physiological roles of gap junctions. Nevertheless, studies in vivo and in vitro together have provided evidence for gap junctions being involved in the regulation of cell metabolism, growth, and differentiation in restricted cell and tissue types. Surprisingly, studies in invertebrates suggest that their gap junctions are encoded not by connexins, but by a family of proteins referred to as innexins. Analysis of various Drosophila and C. elegans mutants suggest that innexins may be functional homologs to the connexins. However, whether innexins are the elusive invertebrate gap junction proteins or, rather, accessory proteins that facilitate gap junction formation remains an open question. Given the rapid progress being made in the cloning and functional analysis of gap junctions in many diverse species, confusion and difficulties with nomenclature are coming to a head in this rapidly expanding field. It may be timely to form a Nomenclature Committee to establish a uniform classification scheme for naming gap junction proteins.  相似文献   

7.
Intercellular communication is mediated by specialized cell-cell contact areas known as gap junctions. Connexins are the constitutive proteins of gap junction intercellular channels. Various cell expression systems are used to express connexins and, in turn, these expression systems can then be tested for their ability to form functional cell-cell channels. In this review, expression of murine endogenous connexins in primary cells and established cell lines is compared with results obtained by expression of exogenous connexins inXenopus oocytes and cultured mammalian cells. In addition, first reports on characterization of connexin-deficient mice are discussed.  相似文献   

8.
The connexins constitute a family of integral membrane proteins that form intercellular channels, enabling adjacent cells in solid tissues to directly exchange ions and small molecules. These channels assemble into distinct plasma membrane domains known as gap junctions. Gap junction intercellular communication plays critical roles in numerous cellular processes, including control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are dynamic plasma membrane domains, and there is increasing evidence that modulation of endocytosis and post-endocytic trafficking of connexins are important mechanisms for regulating the level of functional gap junctions at the plasma membrane. The emerging picture is that multiple pathways exist for endocytosis and sorting of connexins to lysosomes, and that these pathways are differentially regulated in response to physiological and pathophysiological stimuli. Recent studies suggest that endocytosis and lysosomal degradation of connexins is controlled by a complex interplay between phosphorylation and ubiquitination. This review summarizes recent progress in understanding the molecular mechanisms involved in endocytosis and post-endocytic sorting of connexins, and the relevance of these processes to the regulation of gap junction intercellular communication under normal and pathophysiological conditions. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

9.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

10.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

11.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

12.
Gap junctions have traditionally been described as transmembrane channels that facilitate intercellular communication via the passage of small molecules. Connexins, the basic building blocks of gap junctions, are expressed in most mammalian tissues including the developing and adult central nervous system. During brain development, connexins are temporally and spatially regulated suggesting they play an important role in the proper formation of the central nervous system. In the current study, connexins 32 and 43 were overexpressed in PC12 cells to determine whether connexins are involved in neuronal differentiation. Both connexin 32 and 43 were appropriately trafficked to the cell membrane following overexpression and resulted in the formation of functional gap junctions. Connexin overexpression was found to cause enhanced neurite outgrowth in PC12 cells treated with nerve growth factor to initiate neuritogenesis. Surprisingly, however, enhanced neurite outgrowth was found to be the consequence of functional hemichannel formation as opposed to traditional intercellular communication. Additional analysis revealed that ATP was released into the media likely through hemichannels and acted on purinergic receptors to cause enhanced neurite outgrowth. Collectively, the results of the current study suggest that connexins may play an important role in neuronal differentiation by non-traditional mechanisms.  相似文献   

13.
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to ~1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

14.
Gap junctions: structure and function (Review)   总被引:16,自引:0,他引:16  
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   

15.
Gap junctions, composed of connexins, provide a pathway of direct intercellular communication for the diffusion of small molecules between cells. Evidence suggests that connexins act as tumor suppressors. We showed previously that expression of connexin-43 and connexin-32 in an indolent prostate cancer cell line, LNCaP, resulted in gap junction formation and growth inhibition. To elucidate the role of connexins in the progression of prostate cancer from a hormone-dependent to -independent state, we introduced connexin-43 and connexin-32 into an invasive, androgen-independent cell line, PC-3. Expression of these proteins in PC-3 cells resulted in intracellular accumulation. Western blot analysis revealed a lack of Triton-insoluble, plaque-assembled connexins. In contrast to LNCaP cells, connexins could not be cell surface-biotinylated and did not reside in the cell surface derived endocytic vesicles, in PC-3 cells, suggesting impaired trafficking to the cell surface. Intracellular accumulation of connexins was observed in several androgen-independent prostate cancer cell lines. Transient expression of alpha-catenin facilitated the trafficking of both connexins to the cell surface and induced gap junction assembly. Our results suggest that impaired trafficking, and not the inability to form gap junctions, is the major cause of communication deficiency in human prostate cancer cell lines.  相似文献   

16.
The importance of connexins (Cxs) in the cochlear functions has been indicated by the finding that mutations in connexin genes cause a large proportion of sensorineural deafness cases. However, functional roles of connexins in the cochlea are still unclear. In this study, we compared the relative expression levels of 16 different subtypes of mouse connexins in the cochlea. cDNA macroarray hybridizations identified four most prominently expressed connexins (listed in descending order): Cxs 26, 29, 30, and 43. Two of these connexins (Cx26 and Cx30), both belonging to the beta-group, were investigated for their molecular assemblies in the cochlea. Co-immunostaining showed expressions of Cxs 26 and 30 in the same gap junction plaques and their co-assembly was confirmed by co-immunoprecipitation of proteins extracted from the cochlear tissues. The heterologous molecular assembly of connexins is expected to produce gap junctions with biophysical characteristics appropriate for maintaining ionic homeostasis in the cochlea.  相似文献   

17.
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.  相似文献   

18.
Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

19.
Molecular organization of gap junction membrane channels   总被引:7,自引:0,他引:7  
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas formingin vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

20.
Guinea-pig liver gap junctions are constructed from approximately equal amounts of connexins 26 and 32. The assembly of these connexins into connexon hemichannels and gap junctions was studied using antibodies specific to each connexin. Intracellular membranes were shown to contain low amounts of connexin 26 relative to connexin 32 in contrast to the equal connexin ratios detected in lateral plasma membranes and gap junctions. Assembly of gap junctions requires oligomerization of connexins into connexons that may be homomeric or heteromeric. Immunoprecipitation using antibodies to connexins 26 and 32 showed that liver gap junctions were heteromeric. A chemical cross-linking procedure showed that connexons solubilized from guinea-pig liver gap junctions were constructed of hexameric assemblies of connexin subunits. The intracellular site of oligomerization of connexins was investigated by velocity sedimentation in sucrose-detergent gradients. Oligomers of connexins 26 and 32 were extensively present in Golgi membranes and oligomeric intermediates, especially of connexin 26, were detected in the endoplasmic reticulum-Golgi intermediate subcellular fraction. Two intracellular trafficking pathways that may account for the delivery of connexin 26 to the plasma membrane and explain the heteromeric nature of liver gap junctions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号