首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate body axis extension involves progressive generation and subsequent differentiation of new cells derived from a caudal stem zone; however, molecular mechanisms that preserve caudal progenitors and coordinate differentiation are poorly understood. FGF maintains caudal progenitors and its attenuation is required for neuronal and mesodermal differentiation and to position segment boundaries. Furthermore, somitic mesoderm promotes neuronal differentiation in part by downregulating Fgf8. Here we identify retinoic acid (RA) as this somitic signal and show that retinoid and FGF pathways have opposing actions. FGF is a general repressor of differentiation, including ventral neural patterning, while RA attenuates Fgf8 in neuroepithelium and paraxial mesoderm, where it controls somite boundary position. RA is further required for neuronal differentiation and expression of key ventral neural patterning genes. Our data demonstrate that FGF and RA pathways are mutually inhibitory and suggest that their opposing actions provide a global mechanism that controls differentiation during axis extension.  相似文献   

2.
We asked whether mesenchymal/epithelial (M/E) interactions regulate retinoic acid (RA) signaling in the olfactory placode and whether this regulation is similar to that at other sites of induction, including the limbs, branchial arches, and heart. RA is produced by the mesenchyme at all sites, and subsets of mesenchymal cells express the RA synthetic enzyme RALDH2, independent of M/E interactions. In the placode, RA-producing mesenchyme is further distinguished by its coincidence with a molecularly distinct population of neural crest-associated cells. At all sites, expression of additional RA signaling molecules (RARalpha, RARbeta, RXR, CRABP1) depends on M/E interactions. Of these molecules, RA regulates only RARbeta, and this regulation depends on M/E interaction. Expression of Fgf8, shh, and Bmp4, all of which are thought to influence RA signaling, is also regulated by M/E interactions independent of RA at all sites. Despite these common features, RALDH3 expression is distinct in the placode, as is regulation of RARbeta and RALDH2 by Fgf8. Thus, M/E interactions regulate expression of RA receptors and cofactors in the olfactory placode and other inductive sites. Some aspects of regulation in the placode are distinct, perhaps reflecting unique roles for additional local signals in neuronal differentiation in the developing olfactory pathway.  相似文献   

3.
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.  相似文献   

4.
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.  相似文献   

5.
6.
Somites, the segmented building blocks of the vertebrate embryo, arise one by one in a patterning process that passes wavelike along the anteroposterior axis of the presomitic mesoderm (PSM). We have studied this process in Xenopus embryos by analyzing the expression of the bHLH gene, Thylacine1, which is turned on in the PSM as cells mature and segment, in a pattern that marks both segment boundaries and polarity. Here, we show that this segmental gene expression involves a PSM enhancer that is regulated by retinoic acid (RA) signaling at two levels. RA activates Thylacine1 expression in rostral PSM directly. RA also activates Thylacine1 expression in the caudal PSM indirectly by inducing the expression of MKP3, an inhibitor of the FGF signaling pathway. RA signaling is therefore a major contributor to segmental patterning by promoting anterior segmental polarity and by interacting with the FGF signaling pathway to position segmental boundaries.  相似文献   

7.
Retinoic acid (RA), a member of the steroid/thyroid superfamily of signaling molecules, is an essential regulator of morphogenesis, differentiation, and regeneration in the mammalian olfactory pathway. RA-mediated teratogenesis dramatically alters olfactory pathway development, presumably by disrupting retinoid-mediated inductive signaling that influences initial olfactory epithelium (OE) and bulb (OB) morphogenesis. Subsequently, RA modulates the genesis, growth, or stability of subsets of OE cells and OB interneurons. RA receptors, cofactors, and synthetic enzymes are expressed in the OE, OB, and anterior subventricular zone (SVZ), the site of neural precursors that generate new OB interneurons throughout adulthood. Their expression apparently accommodates RA signaling in OE cells, OB interneurons, and slowly dividing SVZ neural precursors. Deficiency of vitamin A, the dietary metabolic RA precursor, leads to cytological changes in the OE, as well as olfactory sensory deficits. Vitamin A therapy in animals with olfactory system damage can accelerate functional recovery. RA-related pathology as well as its potential therapeutic activity may reflect endogenous retinoid regulation of neuronal differentiation, stability, or regeneration in the olfactory pathway from embryogenesis through adulthood. These influences may be in register with retinoid effects on immune responses, metabolism, and modulation of food intake.  相似文献   

8.
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells.  相似文献   

9.
During the development of pharyngeal cartilages, signal molecules, including sonic hedgehog (shh) and various growth factors, as well as Hox genes are expressed in the pharyngeal area. To elucidate whether shh and Hoxd-4 function in pharyngeal cartilage formation in teleost jaw and gill primordia, spatial and temporal patterns of shh expression in flounder (Paralichthys olivaceus) embryonic pharynx were examined. The effects of retinoic acid (RA) on shh and Hoxd-4 expression and the patterning of pharyngeal cartilages were analyzed. At the prim-5 stage, when cartilage precursor cells aggregate in the pharyngeal primordia, pharyngeal endoderm expressed shh in two domains, in portions of the mandibular and hyoid primordia and in the gill primordia. After a further 40 h, shh domains expanded at the posterior edge of the endoderm of each mandibular, hyoid and gill primordium, concurrent with the growth of the primordia. A new shh expression domain appeared at the endodermal border of the mouth. Retinoic acid treatment depressed shh and Hoxd-4 expression, and also reduced the amount of expansion of the shh expression domains. Pharyngeal cartilages that formed in these embryos were malformed; their growth direction was shifted posteriorly and size was reduced. This provides the possibility that shh and Hoxd-4 regulate the growth and direction of pharyngeal cartilage precursor cells and that RA disturbs their expression, causing skeletal malformation.  相似文献   

10.
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement.  相似文献   

11.
Differentiation onset in the vertebrate body axis is controlled by a conserved switch from fibroblast growth factor (FGF) to retinoid signalling, which is also apparent in the extending limb and aberrant in many cancer cell lines. FGF protects tail-end stem zone cells from precocious differentiation by inhibiting retinoid synthesis, whereas later-produced retinoic acid (RA) attenuates FGF signalling and drives differentiation. The timing of RA production is therefore crucial for the preservation of stem zone cells and the continued extension of the body axis. Here we show that canonical Wnt signalling mediates the transition from FGF to retinoid signalling in the newly generated chick body axis. FGF promotes Wnt8c expression, which persists in the neuroepithelium as FGF signalling declines. Wnt signals then act here to repress neuronal differentiation. Furthermore, although FGF inhibition of neuronal differentiation involves repression of the RA-responsive gene, retinoic acid receptor beta (RARbeta), Wnt signals are weaker repressors of neuron production and do not interfere with RA signal transduction. Strikingly, as FGF signals decline in the extending axis, Wnt signals now elicit RA synthesis in neighbouring presomitic mesoderm. This study identifies a directional signalling relay that leads from FGF to retinoid signalling and demonstrates that Wnt signals serve, as cells leave the stem zone, to permit and promote RA activity, providing a mechanism to control the timing of the FGF-RA differentiation switch.  相似文献   

12.
13.
Retinoic acid (RA) is an embryonic signaling molecule regulating a wide array of target genes, thereby being a master regulator of patterning and differentiation in a variety of organs. Here we show that mouse embryos deficient for the RA-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2), if rescued from early lethality by maternal RA supplementation between E7.5 and E8.5, lack active RA signaling in the foregut region. The resulting mutants completely fail to develop lungs. Development of more posterior foregut derivatives (stomach and duodenum), as well as liver growth, is also severely affected. A primary lung bud is specified in the RA-deficient embryos, which fails to outgrow due to defective FGF10 signaling and lack of activation of FGF-target genes, such as Pea3 and Bmp4 in the epithelium. Specific Hox and Tbx genes may mediate these RA regulatory effects. Development of foregut derivatives can be partly restored in mutants by extending the RA supplementation until at least E10.5, but lung growth and branching remain defective and a hypoplastic lung develops on the right side only. Such conditions poorly restore FGF10 signaling in the lung buds. Explant culture of RALDH2-deficient foreguts show a capacity to undergo lung budding and early branching in the presence of RA or FGF10. Our data implicate RA as a regulator of gene expression in the early embryonic lung and stomach region upstream of Hox, Tbx and FGF10 signaling.  相似文献   

14.
Construction of the trunk/caudal region of the vertebrate embryo involves a set of distinct molecules and processes whose relationships are just coming into focus. In addition to the subdivision of the embryo into head and trunk domains, this "caudalisation" process requires the establishment and maintenance of a stem zone. This sequentially generates caudal tissues over a long period which then undergo differentiation and patterning in the extending body axis. Here we review recent studies that show that changes in the signalling properties of the paraxial mesoderm act as a switch that controls onset of differentiation and pattern in the spinal cord. These findings identify distinct roles for different caudalising factors; in particular, Fibroblast Growth Factor (FGF) inhibits differentiation in the caudal stem zone, while Retinoic acid (RA) provided rostrally by somitic mesoderm is required for neuronal differentiation and establishment of ventral neural pattern. Furthermore, the mutual opposition of FGF and RA pathways controls not only neural differentiation but also mesoderm segmentation and might also underlie the progressive assignment of rostrocaudal identity by regulating Hox gene availability and activation.  相似文献   

15.
The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.  相似文献   

16.
Retinoids and spinal cord development   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
The mechanisms of dorsoventral patterning in the vertebrate neural tube   总被引:5,自引:0,他引:5  
We describe the essential features of and the molecules involved in dorsoventral (DV) patterning in the neural tube. The neural tube is, from its very outset, patterned in this axis as there is a roof plate, floor plate, and differing numbers and types of neuroblasts. These neuroblasts develop into different types of neurons which express a different range of marker genes. Early embryological experiments identified the notochord and the somites as being responsible for the DV patterning of the neural tube and we now know that 4 signaling molecules are involved and are generated by these surrounding structures. Fibroblast growth factors (FGFs) are produced by the caudal mesoderm and must be down-regulated before neural differentiation can occur. Retinoic acid (RA) is produced by the paraxial mesoderm and is an inducer of neural differentiation and patterning and is responsible for down-regulating FGF. Sonic hedgehog (Shh) is produced by the notochord and floor plate and is responsible for inducing ventral neural cell types in a concentration-dependent manner. Bone morphogenetic proteins (BMPs) are produced by the roof plate and are responsible for inducing dorsal neural cell types in a concentration-dependent manner. Subsequently, RA is used twice more. Once from the somites for motor neuron differentiation and secondly RA is used to define the motor neuron subtypes, but in the latter case it is generated within the neural tube from differentiating motor neurons rather than from outside. These 4 signaling molecules also interact with each other, generally in a repressive fashion, and DV patterning shows how complex these interactions can be.  相似文献   

19.
In the developing spinal cord and telencephalon, ventral patterning involves the interplay of Hedgehog (Hh), Retinoic Acid (RA) and Fibroblast Growth Factor (FGF) signaling. In the eye, ventral specification involves Hh signaling, but the roles of RA and FGF signaling are less clear. By overexpression assays in Xenopus embryos, we found that both RA and FGF receptor (FGFR) signaling ventralize the eye, by expanding optic stalk and ventral retina, and repressing dorsal retina character. Co-overexpression experiments show that RA and FGFR can collaborate with Hh signaling and reinforce its ventralizing activity. In loss-of-function experiments, a strong eye dorsalization was observed after triple inhibition of Hh, RA and FGFR signaling, while weaker effects were obtained by inhibiting only one or two of these pathways. These results suggest that the ventral regionalization of the eye is specified by interactions of Hh, RA and FGFR signaling. We argue that similar mechanisms might control ventral neural patterning throughout the central nervous system.  相似文献   

20.
FGF signaling through FGFR1 is required for olfactory bulb morphogenesis   总被引:9,自引:0,他引:9  
During development, the embryonic telencephalon is patterned into different areas that give rise to distinct adult brain structures. Several secreted signaling molecules are expressed at putative signaling centers in the early telencephalon. In particular, Fgf8 is expressed at the anterior end of the telencephalon and is hypothesized to pattern it along the anteroposterior (AP) axis. Using a CRE/loxP genetic approach to disrupt genes in the telencephalon, we address the role of FGF signaling directly in vivo by abolishing expression of the FGF receptor Fgfr1. In the Fgfr1-deficient telencephalon, AP patterning is largely normal. However, morphological defects are observed at the anterior end of the telencephalon. Most notably, the olfactory bulbs do not form normally. Examination of the proliferation state of anterior telencephalic cells supports a model for olfactory bulb formation in which an FGF-dependent decrease in proliferation is required for initial bulb evagination. Together the results demonstrate an essential role for Fgfr1 in patterning and morphogenesis of the telencephalon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号