首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most antisera generated to isolated highly purified beta subunits of human glycoprotein hormones are not sufficiently sensitive to detect physiologic blood levels of the native hormone. In the dissociated state, beta subunits assume a conformation different from that in the native hormone. Since antisera to alpha subunits have essentially no cross-reactivity between species, highly purified hCG-beta was combined with bTSH-alpha. That hybrid served as immunogen to assess whether sensitive, specific hCG antisera would more likely result than using hCG-beta alone. Of five animals immunized, three developed sufficiently sensitive and specific antisera. The results of these studies strongly suggests that human glycoprotein beta subunits combined with non-human alpha subunit are more likely to yield specific, sensitive antisera than when either isolated beta subunit or the native human glycoprotein hormone, containing common alpha determinants, serves as immunogen.  相似文献   

2.
We previously demonstrated that genetically linking one or more of the glycoprotein hormone-specific beta subunit genes to the common alpha subunit resulted in single-chain analogues that were bioactive in vitro. The ability of such large structures to bind their cognate receptors with high affinity supported the hypothesis that extensive flexibility exists between the ligand and receptor to establish a functional complex. To further characterize the extent of this conformational flexibility, we engineered a single-chain analogue that consists of sequentially linked thyroid-stimulating hormone (TSH) beta, follicle-stimulating hormone (FSH) beta, and chorionic gonadotropin (CG) beta subunits to the alpha subunit and expressed this chimera in transfected CHO (Chinese hamster ovary) cells. Because the four subunits are genetically linked and expressed as a single-chain, this analogue presumably lacks significant native structural features of the individual heterodimers. However, it exhibited FSH, CG, and TSH activities in vitro. Here, we test whether this nonnative structure would be stable in vivo and thus biologically active. Using a variety of bioassay protocols, we demonstrate that the analogue elicits multihormone activities when injected in vivo. First, treatment with the analogue caused increases in ovarian and uterine weights and resulted in elevated serum estradiol. Second, the analogue-stimulated ovarian follicle growth and pharmacologically rescued in vivo FSH deficiency similar to recombinant human FSH or equine CG (eCG) as confirmed by induction of aromatase in the ovaries of FSHbeta knockout mice. Third, in a superovulation protocol, when primed with eCG, the analogue elicited a dose-dependent ovulatory response comparable with that by native heterodimeric human CG. Finally, the analogue-stimulated thyroxin production in hypothyroid mice similar to the pituitary-derived human TSH standard. Based on these data, we conclude that a single-chain tetradomain glycoprotein hormone analogue, despite its presumed altered conformation, is stable and biologically active in vivo. Our results establish the permissiveness and conformational plasticity with which the glycoprotein hormones are recognized in vivo by their target cell receptors.  相似文献   

3.
The oligosaccharide on alpha-subunit loop 2 (alpha 2) is needed for full glycoprotein hormone efficacy. Efforts to prepare glycoprotein hormone antagonists usually involve removing the alpha 2 oligosaccharide and are hampered by its requirement for efficient heterodimer secretion from mammalian cells. Here we show that hormones lacking this oligosaccharide can be produced by treating them at low pH to dissociate the heterodimer and permitting the subunits to re-associate in the presence of peptide N-glycosidase F (PNGase F). Re-assembly of human choriogonadotropin, human follitropin, and bovine lutropin occurred rapidly and efficiently following removal of the alpha 2 oligosaccharide by PNGase F. Consequently, virtually all heterodimers formed in the presence of this enzyme lacked this oligosaccharide. These findings support the notion that heterodimer assembly in vitro occurs by a threading mechanism that is impeded by the presence of the alpha 2 oligosaccharide. This procedure should facilitate the study of glycoprotein hormone structure and function.  相似文献   

4.

Background  

Cystine-knot (cys-knot) structure is found in a rather large number of secreted proteins and glycoproteins belonging to the TGFbeta and glycoprotein hormone (GPH) superfamilies, many of which are involved in endocrine control of reproduction. In these molecules, the cys-knot is formed by a disulfide (SS) bridge penetrating a ring formed by 8, 9 or 10 amino-acid residues among which four are cysteine residues forming two SS bridges. The glycoprotein hormones Follicle-Stimulating Hormone (FSH), Luteinizing Hormone (LH), Thyroid-Stimulating Hormone (TSH) and Chorionic Gonadotropin (CG) are heterodimers consisting of non-covalently associated alpha and beta subunits that possess cys-knots with 8-amino-acyl (8aa) rings. In order to get better insight in the structural evolution of glycoprotein hormones, we examined the number and organization of SS bridges in the sequences of human 8-aa-ring cys-knot proteins having 7 (gremlins), 9 (cerberus, DAN), 10 (GPA2, GPB5, GPHα) and 12 (GPHβ) cysteine residues in their sequence.  相似文献   

5.
Glycoprotein hormone heterodimers are stabilized by their unusual structures in which a glycosylated loop of the alpha-subunit straddles a hole in the beta-subunit. This hole is formed when a cysteine at the end of a beta-subunit strand known as the "seatbelt" becomes "latched" by a disulfide to a cysteine in the beta-subunit core. The heterodimer is stabilized in part by the difficulty of threading the glycosylated end of the alpha-subunit loop 2 through this hole, a phenomenon required for subunit dissociation. Subunit combination in vitro, which occurs by the reverse process, can be accelerated by removing the alpha-subunit oligosaccharide. In cells, heterodimer assembly was thought to occur primarily by a mechanism in which the seatbelt is wrapped around the alpha-subunit after the subunits dock. Here we show that this "wraparound" process can be used to assemble disulfide cross-linked human choriogonadotropin analogs that contain an additional alpha-subunit cysteine, but only if the normal beta-subunit latch site has been removed. Normally, the seatbelt is latched before the subunits dock and assembly is completed when the glycosylated end of alpha-subunit loop 2 is threaded beneath the seatbelt. The unexpected finding that most assembly of human choriogonadotropin, human follitropin, and human thyrotropin heterodimers occurs in this fashion, indicates that threading may be an important phenomenon during protein folding and macromolecule assembly in the endoplasmic reticulum. We suggest that the unusual structures of the glycoprotein hormones makes them useful for identifying factors that influence this process in living cells.  相似文献   

6.
Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.  相似文献   

7.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

8.
Vertebrate glycoprotein hormone heterodimers are stabilized by a strand of their beta-subunits known as the "seatbelt" that is wrapped around loop 2 of their alpha-subunits (alpha2). The cysteine that terminates the seatbelt is "latched" by a disulfide to a cysteine in beta-subunit loop 1 (beta1) of all vertebrate hormones except some teleost follitropins (teFSH), wherein it is latched to a cysteine in the beta-subunit NH(2) terminus. As reported here, teFSH analogs of human choriogonadotropin (hCG) are assembled by a pathway in which the subunits dock before the seatbelt is latched; assembly is completed by wrapping the seatbelt around loop alpha2 and latching it to the NH(2) terminus. This differs from hCG assembly, which occurs by threading the glycosylated end of loop alpha2 beneath the latched seatbelt through a hole in the beta-subunit. The seatbelt is the part of the beta-subunit that has the greatest influence on biological function. Changes in its sequence during the divergence of lutropins, follitropins, and thyrotropins and the speciation of teleost fish may have impeded heterodimer assembly by a threading mechanism, as observed when the hCG seatbelt was replaced with its salmon FSH counterpart. Whereas wrapping is less efficient than threading, it may have facilitated natural experimentation with the composition of the seatbelt during the co-evolution of glycoprotein hormones and their receptors. Migration of the seatbelt latch site to the NH(2)-terminal end of the beta-subunit would have facilitated teFSH assembly by a wraparound mechanism and may have contributed also to its ability to distinguish lutropin and follitropin receptors.  相似文献   

9.
Lutropin (LH), follitropin (FSH), and thyrotropin (TSH) from pituitary and human chorionic gonadotropin (hCG) from placenta are a family of glycoprotein hormones, each with an alpha and beta subunit. The alpha subunits of all four hormones have the same amino acid sequence, whereas biological specificity is determined by their unique beta subunits. The carbohydrate compositions of these hormones indicate the structures of their Asn-linked oligosaccharides are not identical. Sulfate is present on most, but not all, of these hormones, and for bovine LH is attached to GalNAc (Green, E.D., van Halbeek, H., Boime, I., and Baenziger, J.U. (1985) J. Biol. Chem. 260, 15623-15630). We used a reconstituted cell-free system to study sulfation of bovine (b) and human (h) glycoprotein hormones and its relationship to glycosylation. Exogenously added bLH, bTSH, bFSH, hLH, and hTSH are sulfated exclusively on the oligosaccharides of both alpha and beta subunits. The distribution of sulfated oligosaccharide structures varies among the hormones and appears to result from differences in the extent and/or pathway of oligosaccharide processing. Significant amounts of disulfated, dibranched complex oligosaccharides are present on all the sulfated hormones. Human FSH is not susceptible to sulfation unless first treated with neuraminidase. The sulfated oligosaccharides obtained from bovine FSH and desialylated human FSH are unlike those of the other hormones. Therefore, there is differential processing of the oligosaccharides on pituitary hormones. For FSH and LH, which are believed to be synthesized in the same cell, we would suggest that the unique beta subunits may regulate processing of all oligosaccharides present on the alpha-beta dimers.  相似文献   

10.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common α and a hormone specific β subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the α and β subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (α, FSHβ and hCGβ) asparagine-linked (N-linked) oligosaccharides. CGβ subunit is distinguished among the β subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure–function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

11.
Both the O- and N-linked oligosaccharide moieties of the subunits of the placental glycoprotein hormone, human choriogonadotropin (hCG), are removed by treatment with a mixture of glycosidases produced by Streptococcus (Diplococcus) pneumoniae. The resulting deglycosylated subunits recombine with their native counterparts in good yield, and the reassociated hormones bind to gonadotropin receptors equally as well as the untreated hormone. Stimulation of steroidogenesis by the deglycosylated alpha-native beta recombinant, however, was markedly less than the stimulation by unmodified hCG both in terms of relative potency (0.10-0.15) and the maximal amount of steroid (40-50%) produced. The native alpha-deglycosylated beta recombinant produced a maximum level of steroid production of 80-90% that of control hCG although its relative potency had decreased approximately 4-fold. The data are in accord with results by others in which either hCG or lutropin was partially deglycosylated by treatment with anhydrous hydrofluoric acid. In addition, the effects of deglycosylation on the ability of each subunit to refold after reduction of their disulfide bonds was studied. Of particular interest is that, after deglycosylation, the beta subunit can correctly refold to a significant degree, in contrast to several unsuccessful attempts to demonstrate correct refolding of the unmodified beta subunit of either lutropin or hCG. Alpha subunit, as measured by a conformation sensitive radioimmunoassay, refolds with equal facility both before and after deglycosylation.  相似文献   

12.
Pig small-intestinal mucus glycoprotein, of molecular weight 1.72 X 10(6), is cleaved by Pronase digestion into glycoprotein subunits of molecular weight 4.5 X 10(5). Of the protein component of the native glycoprotein 29% by weight was lost on Pronase digestion, with no loss of carbohydrate. The non-glycosylated region of the protein that was lost with proteolytic digestion had a broad spectrum of amino acid residues, in contrast with the glycosylated region of the protein, which was resistant to proteolysis and was rich in serine, threonine and proline residues. Reduction with 0.2M-mercaptoethanol dissociated the Pronase-digested glycoprotein subunits into smaller glycoprotein subunits of molecular weight 2.7 X 10(5). On reduction, the native glycoprotein was dissociated into subunits of molecular weight 2.4 X 10(5), a similar size to those obtained from reduction of the Pronase-digested glycoprotein. On reductive dissociation of the native glycoprotein, in addition to glycoprotein subunits, protein was also released principally as a component of 90000 molecular weight. This protein was separated quantitatively from the reduced glycoprotein in amounts compatible with one 90000-mol.wt. protein molecule per 1.72 X 10(6)-mol.wt. native glycoprotein molecule. No 90000-mol.wt. protein was released on reduction of the isolated Pronase-digested glycoprotein. Pig small-intestinal mucus glycoprotein is therefore a covalent polymer of glycoprotein subunits joined by disulphide bridges. This polymeric structure differs in important respects from that previously shown for gastric mucus, in particular with respect to the size and number of component subunits per native molecule.  相似文献   

13.
Based on the regeneration of the hormonal activity following recombination, the alpha and beta subunits of human follicle-stimulating hormone have been designated as 'functional' or 'nonfunctional'. Chemical modifications of the tryptophan, methionine, tyrosine and arginine residues of human follicle-stimulating hormone, luteinizing hormone, and the 'functional' human follicle-stimulating hormone alpha and beta subunits have indicated that the tryptophan in human follicle-stimulating hormone-beta and human luteinizing hormone-beta is essential for the biological activity. The iodination of human follicle-stimulating hormone-alpha did not interfere with the hormonal activity. The modification of arginine abolishes the biological activity of the hormones. The accessibility of tyrosine and methionine in human follicle-stimulating hormone-alpha, of arginine in both native hormones and subunits, and the non-availability of the tryptophan residues to 2-hydroxy 5-nitrobenzyl bromide suggest that the alpha subunit lies on the surface of the native molecule.  相似文献   

14.
The human glycoprotein hormones, hCG, TSH, LH, and FSH, are composed of a common alpha-subunit assembled to a hormone-specific beta-subunit. The subunits combine noncovalently early in the secretory pathway and exist as heterodimers but not as multimers. LH/FSH are synthesized in the pituitary gonadotrophs, and several of the alpha-subunit sequences required for association with either the LHbeta or FSHbeta subunits are different. Thus, it is intriguing that no ternary complexes are observed for LH and FSH in vivo (e.g. two different beta-assembled to a single alpha-subunit). To examine whether the alpha-subunit can interact with more than one beta-subunit, and to study the conformational relationships between the ligand and the receptor, we constructed a vector encoding two tandemly arranged beta-subunits fused to a single alpha-subunit gene (FSHbeta-CGbeta-alpha). This approach permitted structure-function analyses of alpha/beta domain complexes without the possibility of subunit dissociation. We reported previously that the CGbeta or FSHbeta subunit gene can be genetically fused to the alpha-gene and the resulting single chains (CGbetaalpha and FSHbetaalpha, respectively) were biologically active. Here we demonstrate that a triple-domain single chain bearing the configuration FSHbeta-CGbeta-alpha is efficiently secreted from transfected Chinese hamster ovary (CHO) cells and exhibits high-affinity receptor binding to both FSH and LH/hCG receptors, comparable to the native heterodimers. These results indicate that the alpha-subunit can interact with each beta-subunit in the same complex and that an alpha-domain fused to a beta-domain can still interact with an additional beta-subunit. The data also demonstrate the remarkable flexibility of the receptor to accommodate the increased bulkiness of the triple-domain ligand. In addition, the formation of intrachain FSH- and CG-like complexes observed in a triple-domain single chain suggests that the alpha-subunit can resonate, i.e. shuttle between alpha-beta heterodimeric intermediates during the early stages of synthesis and accumulation in the endoplasmic reticulum. Such model compounds could be useful as substrates to generate a new class of analogs in which the ratio of the LH/FSH activity is varied. This could aid in the design of analogs that could be used to mimic the in vivo hormonal profiles.  相似文献   

15.
The B chain of cholera toxin and the β subunits of thyrotropin, luteinizing hormone, human chorionic gonadotropin, and follicle-stimulating hormone are shown to have a region of sequence analogy believed to correlate with their ability to bind to receptors on cell membranes. A possible sequence analogy is also defined in the α subunits of these glycoprotein hormones and a region of the cholera toxin A1 chain believed to be responsible for adenylate cyclase activation.  相似文献   

16.
The stimulation of cyclic AMP accumulation and testosterone synthesis in isolated rat Leydig cells by ovine and bovine ICSH, their subunits prepared by a new, mild procedure (dissociation of subunits at pH 3 and salt fractionation) and the recombined hormones have been studied. Whereas the isolated subunits exhibit less than 0.2% of the potency of the native hormones, recombination of the subunits results in full restoration of the biological activity. In contrast to this, recombination of the subunits prepared by a countercurrent distribution method resulted in only partial regeneration of the biological activity. The ovine hormone was found to be twice as active as the bovine ICSH. Both heterologous hybrids of the subunits of the ovine and bovine hormones were significantly more active than the bovine hormone. The utility of the isolated rat Leydig cell system as a rapid, sensitive bioassay for ICSH is also discussed.  相似文献   

17.
Human choriogonadotropin, a hormone derived from the syncytiotrophoblast cells of the placenta, is a member of the glycoprotein hormone family which also contains the pituitary hormones lutropin, follitropin and thyrotropin. These four hormones are comprised of two dissimilar subunits, one (α) being common to all four and the other (β) conferring hormonal specificity. Information is rapidly accumulating on the nature and regulation of the genes for these subunits, as well as the structural aspects, mechanism-of-action and physiological roles of these complex hormones. This mini review considers some of the recent advances in our understanding of human choriogonadotropin.  相似文献   

18.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a homotrimer of gp120/gp41 heterodimers to support virus entry. During the process of virus entry, an individual HIV-1 envelope glycoprotein trimer binds the cellular receptors CD4 and CCR5/CXCR4 and mediates the fusion of the viral and the target cellular membranes. By studying the function of heterotrimers between wild-type and nonfunctional mutant envelope glycoproteins, we found that two wild-type subunits within an envelope glycoprotein trimer are required to support virus entry. Complementation between HIV-1 envelope glycoprotein mutants defective in different functions to allow virus entry was not evident. These results assist our understanding of the mechanisms whereby the HIV-1 envelope glycoproteins mediate virus entry and membrane fusion and guide attempts to inhibit these processes.  相似文献   

19.
《The Journal of cell biology》1989,109(4):1429-1438
Chorionic gonadotropin (CG) and lutropin (LH) are members of a family of glycoprotein hormones that share a common alpha subunit but differ in their hormone-specific beta subunits. The glycoprotein hormone beta subunits share a high degree of amino acid homology that is most evident for the LH beta and CG beta subunits having greater than 80% sequence similarity. However, transfection studies have shown that human CG beta and alpha can be secreted as monomers and can combine efficiently to form dimer, whereas secretion and assembly of human LH beta is less efficient. To determine which specific regions of the LH beta and CG beta subunits are responsible for these differences, mutant and chimeric LH beta-CG beta genes were constructed and transfected into CHO cells. Expression of these subunits showed that both the hydrophobic carboxy-terminal seven amino acids and amino acids Trp8, Ile15, Met42, and Asp77 together inhibit the secretion of LH beta. The carboxy-terminal amino acids, along with Trp8, Ile15, Met42, and Thr58 are implicated in the delayed assembly of LH beta. These unique features of LH beta may also play an important role in pituitary intracellular events and may be responsible for the differential glycosylation and sorting of LH and FSH in gonadotrophs.  相似文献   

20.
The glycoprotein hormones are heterodimeric proteins that share a common alpha subunit and have unique beta subunits that confer receptor selectivity. One member of this family, follicle-stimulating hormone (FSH), is secreted by the pituitary and is involved in the control of male and female reproduction. Herein, we describe the construction of baculoviruses for glutathione-S-transferase (GST) fusions of the human FSH (hFSH) subunits and their expression in insect cells, either alone or with the complementary non-fused FSH subunits (FSHalpha or FSHbeta). Only the GST-BV-hFSHalpha monomer and the GST-BV-hFSHalpha/BV-hFSHbeta (GST-BV-hFSH) heterodimer were efficiently secreted into the culture supernatant. The hybrid molecule, GST-BV-hFSH, was affinity purified in one step, and demonstrated activity in receptor-radioligand binding assays and in a cAMP accumulation assay. The use of GST-BV-hFSHalpha provides a novel and efficient method for purifying and studying members of the glycoprotein hormone family derived from the culture supernatant or subcellular fractions of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号