首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsynteny with rice and comparative genetic mapping were used to identify candidate orthologous sequences to the rice Hd1(Se1) gene in Lolium perenne and Festuca pratensis. A F. pratensis bacterial artificial chromosome (BAC) library was screened with a marker (S2539) physically close to Hd1 in rice to identify the equivalent genomic region in F. pratensis. The BAC sequence was used to identify and map the same region in L. perenne. Predicted protein sequences for L. perenne and F. pratensis Hd1 candidates (LpHd1 and FpHd1) indicated they were CONSTANS-like zinc finger proteins with 61-62% sequence identity with rice Hd1 and 72% identity with barley HvCO1. LpHd1 and FpHd1 were physically linked in their respective genomes (< 4 kb) to marker S2539, which was mapped to L. perenne chromosome 7. The identified candidate orthologues of rice Hd1 and barley HvCO1 in L. perenne and F. pratensis map to chromosome 7, a region of the L. perenne genome which has a degree of conserved genetic synteny both with rice chromosome 6, which contains Hd1, and barley chromosome 7H, which contains HvCO1.  相似文献   

2.
 Using a recently developed polymerase chain reaction (PCR)-mediated approach for physical mapping of single-copy DNA sequences on microisolated chromosomes of barley, sequence-tagged sites of DNA probes that reveal restriction fragment length polymorphisms (RFLP) localized on the linkage maps of rice chromosomes 5 and 10 were allocated to cytologically defined regions of barley chromosome 5 (1H). The rice map of linkage group 5, of about 135 cM in size, falls into two separate parts, which are related to the distal portions of both the short and long arms of the barley chromosome. The markers on the rice map of chromosome 5 were found to be located within regions of the barley chromosome which show high recombination rates. The map of rice chromosome 10, of about 75 cM in size, on the other hand, is related to an interstitial segment of the long arm of chromosome 5 (1H) which is highly suppressed in recombination activity. For positional cloning of genes of this homoeologous region from the barley genome, the small rice genome will probably prove to be a useful tool. No markers located on rice chromosomes were detected within the pericentric Giemsa-positive heterochromatin of the barley chromosome, indicating that these barley-specific sequences form a block which separates the linkage segments conserved in rice. By our estimate approximately half of the barley-specific sequences of chromosome 5 (1H) show a dispersed distribution, while the other half separates the conserved linkage segments. Received: 29 February 1996 / Accepted: 28 June 1996  相似文献   

3.
In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.  相似文献   

4.
The rapidly growing expressed sequence tag (EST) resources of species representing the Poacea family and availability of comprehensive sequence information for the rice (Oryza sativa) genome create an excellent opportunity for comparative genome analysis. Extensive synteny between rice chromosome 1 and barley (Hordeum vulgare L.) chromosome 3 has proven extremely useful for saturation mapping of chromosomal regions containing target genes of large-genome barley with conserved orthologous genes from the syntenic regions of the rice genome. Rph5 is a gene conferring resistance to the barley leaf rust pathogen Puccinia hordei. It was mapped to chromosome 3HS, which is syntenic with rice chromosome 1S. The objective of this study was to increase marker density within the sub-centimorgan region around Rph5, using sequence-tagged site (STS) markers that were developed based on barley ESTs syntenic to the phage (P1)-derived artificial chromosome (PAC) clones comprising the distal region of rice chromosome 1S. Five rice PAC clones were used as queries in a blastn search to screen 375,187 barley ESTs. Ninety-four non-redundant EST sequences were identified from the EST database and used as templates to design 174 pairs of primer combinations. As a result, 9 barley EST-based STS markers were incorporated into the ‘Bowman’ × ‘Magnif 102’ high-resolution map of the Rph5 region. More importantly, six markers, including five EST-derived STS sequences, were found to co-segregate with Rph5. The results of this study demonstrate the usefulness of rice genomic resources for efficient deployment of barley ESTs for marker saturation of targeted barley genomic regions.  相似文献   

5.
Anchor probes for comparative mapping of grass genera   总被引:13,自引:0,他引:13  
 Comparative mapping of cDNA clones provides an important foundation for examining structural conservation among the chromosomes of diverse genera and for establishing hypotheses about the relationship between gene structure and function in a wide range of organisms. In this study, “anchor probes” were selected from cDNA libraries developed from rice, oat, and barley that were informative for comparative mapping in the grass family. One thousand eight hundred probes were screened on garden blots containing DNA of rice, maize, sorghum, sugarcane, wheat, barley, and oat, and 152 of them were selected as “anchors” because (1) they hybridized to the majority of target grass species based on Southern analysis, (2) they appeared to be low or single copy in rice, and (3) they helped provide reasonably good genome coverage in all species. Probes were screened for polymorphism on mapping parents, and polymorphic markers were mapped onto existing species-specific linkage maps of rice, oat, maize, and wheat. In wheat, both polymorphic and monomorphic markers could be assigned to chromosomes or chromosome arms based on hybridization to nullitetrasomic and ditelosomic stocks. Linkage among anchored loci allowed the identification of homoeologous regions of these distantly related genomes. Anchor probes were sequenced from both ends, providing an average of 260 bp in each direction, and sequences were deposited in GenBank. BLAST was used to compare the sequences with each other and with a non-redundant protein sequence database maintained at the European Molecular Biology Laboratory (EMBL). Of the anchor probes identified in this study 78% showed significant similarity to protein sequences for known genes with BLASTX scores exceeding 100. Received: 27 June 1997 / Accepted: 17 July 1997  相似文献   

6.
Colinearity of a large region from barley (Hordeum vulgare) chromosome 5H and rice (Oryza sativa) chromosome 3 has been demonstrated by mapping of several common restriction fragment-length polymorphism clones on both regions. One of these clones, WG644, was hybridized to rice and barley bacterial artificial chromosome (BAC) libraries to select homologous clones. One BAC from each species with the largest overlapping segment was selected by fingerprinting and blot hybridization with three additional restriction fragment-length polymorphism clones. The complete barley BAC 635P2 and a 50-kb segment of the rice BAC 36I5 were completely sequenced. A comparison of the rice and barley DNA sequences revealed the presence of four conserved regions, containing four predicted genes. The four genes are in the same orientation in rice, but the second gene is in inverted orientation in barley. The fourth gene is duplicated in tandem in barley but not in rice. Comparison of the homeologous barley and rice sequences assisted the gene identification process and helped determine individual gene structures. General gene structure (exon number, size, and location) was largely conserved between rice and barley and to a lesser extent with homologous genes in Arabidopsis. Colinearity of these four genes is not conserved in Arabidopsis compared with the two grass species. Extensive similarity was not found between the rice and barley sequences other than within the exons of the structural genes, and short stretches of homology in the promoters and 3' untranslated regions. The larger distances between the first three genes in barley compared with rice are explained by the insertion of different transposable retroelements.  相似文献   

7.
Conventionally, the genetics of species of the family Gramineae have been studied separately. Comparative mapping using DNA markers offers a method of combining the research efforts in each species. In this study, we developed consensus maps for members of the Triticeae tribe (Triticum aestivum, T. tauschii, andHordeum spp.) and compared them to rice, maize and oat. The aneuploid stocks available in wheat are invaluable for comparative mapping because almost every DNA fragment can be allocated to a chromosome arm, thus preventing erroneous conclusions about probes that could not be mapped due to a lack of polymorphism between mapping parents. The orders of the markers detected by probes mapped in rice, maize and oat were conserved for 93, 92 and 94% of the length of Triticeae consensus maps, respectively. The chromosome segments duplicated within the maize genome by ancient polyploidization events were identified by homoeology of segments from two maize chromosomes to regions of one Triticeae chromosome. Homoeologous segments conserved across Triticeae species, rice, maize, and oat can be identified for each Triticeae chromosome. Putative orthologous loci for several simply inherited and quantitatively inherited traits in Gramineae species were identified.Communicated by H. Saedler  相似文献   

8.
A number of mutations affecting seed development in barley (Hordeum vulgare L.) have been known for many years; however, to date, no research has been reported that elucidates the molecular structure of the causal genes. As a first step, we initiated the linkage mapping of the two shrunken endosperm genes seg8 and sex1 using microsatellite markers. The recessive gene seg8 was mapped in the centromeric region of chromosome 7H to a 4.6 cM interval flanked by markers GBM1516 and Bmag341. The recessive sex1 gene showed xenia effects and was located in the centromeric region of barley chromosome 6H, which is in accordance to the previously reported chromosomal location in the classical linkage map. It was flanked by markers GBM5012 and GBM1063 in a 4.2 cM interval. EST-derived microsatellite markers were used to establish the syntenic relationships to the genomic rice sequences. Two orthologous sites on rice chromosome 2 flanking a 4.1 Mb sequence had homology to the respective barley markers in the sex1 region. For the markers in the seg8 region orthologous sites on rice chromosome 6 were detected.  相似文献   

9.
In this study, comparative high resolution genetic mapping of the GA-insensitive dwarfing gene sdw3 of barley revealed highly conserved macrosynteny of the target region on barley chromosome 2HS with rice chromosome 7L. A rice contig covering the sdw3-orthologous region was identified and subsequently exploited for marker saturation of the target interval in barley. This was achieved by (1) mapping of rice markers from the orthologous region of the rice genetic map, (2) mapping of rice ESTs that had been physically localized on the rice contig, or (3) mapping of barley ESTs that show strong sequence similarity to coding sequences present in the rice contig. Finally, the sdw3 gene was mapped to an interval of 0.55 cM in barley, corresponding to a physical distance of about 252 kb in rice, after employing orthologous EST-derived rice markers. Three putative ORFs were identified in this interval in rice, which exhibited significant sequence similarity to known signal regulator genes from different species. These ORFs can serve as starting points for the map-based isolation of the sdw3 gene from barley.Communicated by R. Hagemann  相似文献   

10.
The annotated Arabidopsis genome sequence was exploited as a tool for carrying out comparative analyses of the Arabidopsis and Capsella rubella genomes. Comparison of a set of random, short C. rubella sequences with the corresponding sequences in Arabidopsis revealed that aligned protein-coding exon sequences differ from aligned intron or intergenic sequences in respect to the degree of sequence identity and the frequency of small insertions/deletions. Molecular-mapped markers and expressed sequence tags derived from Arabidopsis were used for genetic mapping in a population derived from an interspecific cross between Capsella grandiflora and C. rubella. The resulting eight Capsella linkage groups were compared to the sequence maps of the five Arabidopsis chromosomes. Fourteen colinear segments spanning approximately 85% of the Arabidopsis chromosome sequence maps and 92% of the Capsella genetic linkage map were detected. Several fusions and fissions of chromosomal segments as well as large inversions account for the observed arrangement of the 14 colinear blocks in the analyzed genomes. In addition, evidence for small-scale deviations from genome colinearity was found. Colinearity between the Arabidopsis and Capsella genomes is more pronounced than has been previously reported for comparisons between Arabidopsis and different Brassica species.  相似文献   

11.
Analysis of the barley and rice genomes by comparative RFLP linkage mapping   总被引:5,自引:0,他引:5  
Comparative genetic mapping of rice and barley, both major crop species with extensive genetic resources, offers the possibility of uniting two well-established and characterized genetic systems. In the present study, we screened 229 molecular markers and utilized 110 polymorphic orthologous loci to construct comparative maps of the rice and barley genomes. While extensive chromosomal rearrangements, including inversions and intrachromosomal translocations, differentiate the rice and barley genomes, several syntenous chromosomes are evident. Indeed, several chromosomes and chromosome arms appear to share nearly identical gene content and gene order. Seventeen regions of conserved organization were detected, spanning 287 cM (24%) and 321 cM (31%) of the rice and barley genomes, respectively. The results also indicate that most (72%) of the single-copy sequences in barley are also single copy in rice, suggesting that the large barley genome arose by unequal crossing over and amplification of repetitive DNA sequences and not by the duplication of single-copy sequences. Combining these results with those previously reported for comparative analyses of rice and wheat identified nine putatively syntenous chromosomes among barley, wheat and rice. The high degree of gene-order conservation as detected by comparative mapping has astonishing implications for interpreting genetic information among species and for elucidating chromosome evolution and speciation.  相似文献   

12.
Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses.  相似文献   

13.
The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare)   总被引:7,自引:0,他引:7  
Faure S  Higgins J  Turner A  Laurie DA 《Genetics》2007,176(1):599-609
The FLOWERING LOCUS T (FT) gene plays a central role in integrating flowering signals in Arabidopsis because its expression is regulated antagonistically by the photoperiod and vernalization pathways. FT belongs to a family of six genes characterized by a phosphatidylethanolamine-binding protein (PEBP) domain. In rice (Oryza sativa), 19 PEBP genes were previously described, 13 of which are FT-like genes. Five FT-like genes were found in barley (Hordeum vulgare). HvFT1, HvFT2, HvFT3, and HvFT4 were highly homologous to OsFTL2 (the Hd3a QTL), OsFTL1, OsFTL10, and OsFTL12, respectively, and this relationship was supported by comparative mapping. No rice equivalent was found for HvFT5. HvFT1 was highly expressed under long-day (inductive) conditions at the time of the morphological switch of the shoot apex from vegetative to reproductive growth. HvFT2 and HvFT4 were expressed later in development. HvFT1 was therefore identified as the main barley FT-like gene involved in the switch to flowering. Mapping of HvFT genes suggests that they provide important sources of flowering-time variation in barley. HvFTI was a candidate for VRN-H3, a dominant mutation giving precocious flowering, while HvFT3 was a candidate for Ppd-H2, a major QTL affecting flowering time in short days.  相似文献   

14.
15.
A major gene-rich region on the end of the long arm of Triticeae group 2 chromosomes exhibits high recombination frequencies, making it an attractive region for positional cloning. Traits known to be controlled by this region include chasmogamy/cleistogamy, frost tolerance at flowering, grain yield, head architecture, and resistance to Fusarium head blight and rusts. To assist these cloning efforts, we constructed detailed genetic maps of barley chromosome 2H, including 61 polymerase chain reaction markers. Colinearity with rice occurred in eight distinct blocks, including five blocks in the terminal gene-rich region. Alignment of rice sequences from the junctions of colinear chromosome segments provided no evidence for the involvement of long (>2.5 kb) inverted repeats in generating inversions. However, reuse of some junction sequences in two or three separate evolutionary breakage/fusion events was implicated, suggesting the presence of fragile sites. Sequencing across 91 gene fragments totaling 107 kb from four barley genotypes revealed the highest single nucleotide substitution and insertion–deletion polymorphism levels in the terminal regions of the chromosome arms. The maps will assist in the isolation of genes from the chromosome 2L gene-rich region in barley and wheat by providing markers and accelerating the identification of the corresponding points in the rice genome sequence. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
To provide improved access to the wealth of resources and genomic information that is presently being developed for rice a set of 88 rice expressed sequence tags (ESTs) previously mapped on rice chromosome I in the cross 'Nipponbare' x 'Kasalath' was used for comparative mapping in a cross of the barley cultivars 'Igri' and 'Franka'. As expected. most (89%) of the clones gave distinct banding patterns in barley of which about one-third was polymorphic between 'Igri' and 'Franka'. These polymorphisms were mapped, and most of these (56%) confirmed that rice chromosome 1 and barley chromosome 3H are syntenous. All single-copy markers identified conserved collinear positions, while markers with multiple copies did so in a few cases only. The markers that were not fitting in the collinear order were distributed randomly across the barley genome. The comparative maps of barley chromosome 3H and rice chromosome 1 comprise in total 26 common markers covering more than 95% of the genetic length of both chromosomes. A 30-fold reduction of recombination is seen around the barley centromere, and synteny may be interrupted in this region. However, the good overall synteny on a mesoscale (1-10 cM) justifies the use of rice as a platform for map-based cloning in barley.  相似文献   

17.
T. Foote  M. Roberts  N. Kurata  T. Sasaki    G. Moore 《Genetics》1997,147(2):801-807
Detailed physical mapping of markers from rice chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the ph1b and ph1c deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae.  相似文献   

18.
19.
水稻中大麦Mlo和玉米Hm1抗病基因同源序列的分析和定位   总被引:4,自引:0,他引:4  
刘卫东  王石平 《遗传学报》2002,29(10):875-879
大麦抗病基因Mlo和玉米抗病基因Hm1编码的产物不具有绝大多数植物抗病基因产物所含有的保守结构域。这两个抗病基因的作用机理也不符合基因对基因学说。从水稻中分离克隆了Mlo基因的同源序列OsMlo-1和玉米Hm1基因的同源序列DFR-1。利用水稻分子标记遗传连锁图,将OsMlo-1定位于水稻第六染色体的两俱RZ667和RG424之间;Osmlo-1距离这两个分子标记分别为20.6和6.0cM(centi-Morgan)。将DFR-1定位于水稻第一染色体两个分子标记R2635和RG462之间;DFR-1距离这两个分子标记分别为11.3和23.9cM。参照已发表的水稻分子标记连锁图,发现OsMlo-1和DFR-1的染色体位点分别与两个报道的水稻抗稻瘟病数量性状位点(QTL)有较好的对应关系。结果提示,水稻中与大麦Mlo 和玉米Hml同源的基因可能也参于抗病反应的调控。  相似文献   

20.
We describe the development of polymerase chain reaction-based, sequence-tagged site (STS) markers for fine mapping of the barley (Hordeum vulgare) Ror1 gene required for broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. hordei). After locating Ror1 to the centromeric region of barley chromosome 1H using a combined amplified fragment length polymorphism/restriction fragment-length polymorphism (RFLP) approach, sequences of RFLP probes from this chromosome region of barley and corresponding genome regions from the related grass species oat (Avena spp.), wheat, and Triticum monococcum were used to develop STS markers. Primers based on the RFLP probe sequences were used to polymerase chain reaction-amplify and directly sequence homologous DNA stretches from each of four parents that were used for mapping. Over 28,000 bp from 22 markers were compared. In addition to one insertion/deletion of at least 2.0 kb, 79 small unique sequence polymorphisms were observed, including 65 single nucleotide substitutions, two dinucleotide substitutions, 11 insertion/deletions, and one 5-bp/10-bp exchange. The frequency of polymorphism between any two barley lines ranged from 0.9 to 3.0 kb, and was greatest for comparisons involving an Ethiopian landrace. Haplotype structure was observed in the marker sequences over distances of several hundred basepairs. Polymorphisms in 16 STSs were used to generate genetic markers, scored by restriction enzyme digestion or by direct sequencing. Over 2,300 segregants from three populations were used in Ror1 linkage analysis, mapping Ror1 to a 0.2- to 0.5-cM marker interval. We discuss the implications of sequence haplotypes and STS markers for the generation of high-density maps in cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号