首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Maternal investment can be influenced by several factors, especially maternal quality and possibilities for future reproduction. Mass provisioning Hymenoptera are an excellent group for measuring maternal investment because mothers distribute food sources to each brood cell for each offspring separately. Generally in aculeate Hymenoptera, larger females produce larger offspring and invest more in female offspring than in male offspring. 2. This study investigated patterns of maternal investment in Ceratina chalcites, which has an uncommon type of sexual size dimorphism in Hymenoptera: on average, males are heavier than females. It was found that larger females produce a significantly higher proportion of male offspring, as males are the costlier sex in this species. 3. Facultative nest guarding by females was observed. Females can guard offspring until adulthood, as is typical for bees of genus Ceratina (34.43% of nests); however, in the majority of cases (65.56% of nests), females plug and abandon the nest. Significant differences were found in the amount of investment between guarded and unguarded nests. Guarded nests had a greater number of provisioned brood cells and a higher proportion of male offspring. It is suggested that mothers have two facultative strategies – either she makes a large investment in the offspring of one nest or she abandons the first nest and carries out a second nesting elsewhere.  相似文献   

2.
Females of the bivoltine thrips Elaphrothrips tuberculatus (Hood) (Insecta: Thysanoptera) produce broods of either all males (by viviparity) or all females (by oviparity). Measurements of the sex-allocation ratio, ecological and physiological conditions affecting male and female offspring body size, and correlates of the relative fitnesses of adult males and females in relation to size indicate that female parents tend to be viviparous (produce males) if their offspring will become relatively large adults, and that males gain more in fitness from large size than do females. However, the conditions that link sex allocation with offspring fitness differ between the spring and summer generations. In spring, when breeding is synchronous, 1) oviparous and viviparous females do not differ in body size, 2) females tend to be viviparous where the fungus upon which they feed is relatively dense and where their offspring will become relatively large adults, and 3) fungus density is highly correlated with male and female offspring size. In summer, when breeding is relatively asynchronous, 1) viviparous females are much larger than oviparous females early (but not late) in the season, 2) large viviparous females begin breeding earlier than smaller ones, 3) offspring developing earlier in the season become larger adults, and 4) a higher proportion of females are viviparous earlier than later. Field experiments and field collections show that the covariation among sex allocation, conditions, and fitness is not caused by differential mortality by size or sex. Differences between the spring and summer generations in the cues used by females to adjust offspring sex ratio may be caused by seasonal variation in the factors that affect offspring size. However, in both generations, females tend to produce sons only when their offspring will become relatively large adults, whereas daughters are produced regardless of offspring size. These data suggest that females of E. tuberculatus avoid production of males (the sex with higher variance in expected fitness) when the size of their offspring is relatively uncertain.  相似文献   

3.
Gynogenesis is a chromosomal manipulation technique where an offspring is generated exclusively from maternal inheritance. In the yellowtail tetra (Astyanax altiparanae) almost all gynogenetic fish were females, suggesting a genetic sex determination system of XX/XY. However, due to environmental (e.g. temperature) or unknown genetic factors, the rise of males are described. Therefore, the aim of this study was to analyze the reproductive parameters of spontaneously gynogenetic males. The parameters analyzed were spermatozoon viability, motility and ploidy. Additionally, the gonads were processed for histology and the genetic inheritance confirmed by genotyping. Sperm parameters of gynogenetic males did not show differences when compared with semen of normal males. These data supports that gynogenetic males presents fertilization capacity and can be used for future studies of chromosome manipulation or possible production of monosex populations in Aaltiparanae.  相似文献   

4.
In rainbow trout (Oncorhynchus mykiss), the acknowledged sex-determining system is genetic sex determination (GSD) with female homogamety (female symbolXX-male symbolXY). Subsequently, mitotic gynogens are all expected to be females. Unexpected maleness was fortuitously observed in a mitotic gynogenetic family of rainbow trout (13 males out of 27). An equal ratio of males and females suggested the possible segregation of some Mendelian sex-influencing factor. In order to perform a comprehensive analysis of the inheritance and expression of the factor involved, the transmission of maleness was studied across the next three generations, using both conventional and/or meiotic and mitotic gynogenetic offspring. On the whole, males as well as intersexes were observed in crosses between two expected carrier parents, and in gynogenetic offspring of expected carrier females, but not in crosses between one expected carrier parent and one normal XX control. Sex ratios in the different crosses often fitted Mendelian proportions, but not always. Both excess and lack of maleness were observed. The simplest hypothesis consistent with most results is a one-locus model, assuming the existence of a mutation (termed mal) of a sex-determining gene, which is able to override the primary XX mechanism of sex determination and to induce the development of testicular tissue in the gonads of expected XX individuals. The one-locus model requires that the mal mutation usually, but not systematically, behave as a recessive mutation and have a limited penetrance, that is, heterozygous (mal/+) may be sex reversed, homozygous (mal/mal) may remain female, and carrier individuals may undergo partial masculinization alone (many intersexes were recorded). Inconsistency in sex ratios among offspring of parents expected to respond the same way was recorded, indicating that other modifier loci may also be involved. Finally, the occurrence of both males and females in clonal progenies showed that epigenetic factors also likely influence the expression of maleness. The effects of the mal mutation are compared to similar mutations recently described in other fish species. The nature and location of the mal gene (carried by heterochromosomes or an autosomal pair) is briefly discussed in view of the knowledge recently acquired on the subject.  相似文献   

5.
Survival, growth and sex ratios of gynogenetic diploid honmoroko   总被引:1,自引:0,他引:1  
Survival, growth and sex ratios of gynogenetic diploid honmoroko Gnathopogon caerulescens induced by blocking the release of the second polar body were examined. Mean survival of gynogenetic juveniles at 130 days after hatching was about 33% lower than that of the controls. No significant difference was seen in early growth between control and gynogenetic diploids. Standard length and body weight in six groups of gynogenetic progeny were significantly greater but in two groups were significantly smaller than in the controls. Although 69% of gynogenetic diploids had well-developed gonads, the remaining 30% had undeveloped gonads (small in size or thread-like), and those gonads were divided into four types. The mean proportion of females in the 10 gynogenetic groups was 87·2% which was significantly ( P <0·01) higher than in the controls (44·7%). Gynogenetic diploids included 3·0–35·3% males. Most of those males produced a high proportion of female progeny, but the proportion of male offspring varied widely. From these results, the sex determining mechanism in honmoroko was presumed to be female homogamety, but other factors resulted in the production of males.  相似文献   

6.
Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.  相似文献   

7.
The thimbleberry aphid,Masonaphis maxima (Mason) lives on patches of plants that support 3,4 or 5 generations depending on site and weather. The life cycle requires sexual females and males to produce overwintering eggs. The eggs hatch in the spring to produce the first ’fundatrix’ generation; subsequent generations are produced parthenogenically. Males and other morphs are produced by wingless virginoparae, but sexual females are produced by ’gynoparae’, a winged morph that is specialized to produce only sexual females. The fundatrices have no indication of the number of generations that the plants will support in the current year. There are two fundatrix types that coexist in different ratios depending on the number of generations supported by the patch the previous year. One type produces sexual females in generations 3 and 5, and males in generations 4 and 5; the other type produces sexual females in generations 4 and 5, and males in generations 3, 4 and 5. The dimorphism adapts the aphid to its heterogeneous and somewhat unpredictable environment. The role of sex in the maintenance of the dimorphism is discussed. This is the first report of fundatrix polymorphism and consequent differential sex expression in aphids.  相似文献   

8.
The survival, growth, gonadal development and sex ratios of gynogenetic diploid turbot Scophthalmus maximus between 9 and 36 months of age were investigated. Gynogenesis was induced by activation of freshly collected eggs with diluted (1 : 10 with Ringer) and UV‐irradiated (30000 erg mm−2) sperm, followed by a cold shock at −1 to 0° C for 25 min, starting at 6·5 min after fertilization. The exclusive maternal inheritance of the resulting gynogenetic diploids was confirmed in all individuals used in the experiment by microsatellite markers. Mean total length and mass throughout the experiment was higher in the controls than in the gynogenetics. The gonadal development in gynogenetic males proceeded normally, and in gynogenetic females it was delayed during the first sexual maturation but was normal during the second one. The sex ratio was 1 male (M) : 1 female (F) in the controls, as expected, but 1 M : 3 F in the gynogenetics. In a second, independent experiment, carried out with fish originating from different broodstock, however, the sex ratio was 1 M : 1 F in the controls and 0 M : 1 F ( i.e . 100% females) in the gynogenetics. Together, these results suggested that the main sex‐determining genetic component in turbot fits well to female homogamety, in accordance with data from other flatfishes. These results indicate that it will be possible to obtain near or all‐female turbot stocks through induced gynogenesis or by crosses involving hormonally sex‐reversed fish.  相似文献   

9.
Summary In Xenopus laevis, which does not show sex chromosomal dimorphism, the female is heterogametic (WZ) and the male is homogametic (ZZ). By activating eggs with UV-irradiated spermatozoa, and by inhibiting the formation of the second polar body gynogenetic diploids were obtained, including some WW females. These super-females are fertile and not sublethal; by gynogenetic reproduction they in turn generate only WW females, while after mating with a male they give rise to WZ females exclusively.From the sex ratio of the gynogenetic progeny of normal WZ females, the map distance between the centromere and the sex determining gene(s) has been calculated. By examining the sex ratio and the distribution of individuals exhibiting the phenotype of periodic albinism in the gynogenetic offspring of ap/+females, it has been demonstrated that the ap gene and the sex determining gene(s) are not linked.  相似文献   

10.
1. Sex allocation theory predicts that where dispersal is sex biased, the fitness consequences of producing male or female offspring are mediated by resource availability and maternal competitive ability. Females in poorer condition are expected to favour dispersing offspring to minimize resource competition with kin. Environmental heterogeneity may drive spatial variation in sex allocation through resource competition-related benefits to females and territory quality benefits to dispersing or philopatric offspring. 2. Here, we demonstrate that microhabitat heterogeneity can drive extremely fine-scale spatial heterogeneity in offspring sex allocation. Female bobucks (Trichosurus cunninghami) in temperate rainforest were more likely to produce male offspring than those in surrounding Eucalyptus forest. 3. A maternal physiological effect was identified, in that females of lower body mass were more likely to produce male offspring. This finding is consistent with resource competition predictions, in that smaller females are expected to have poorer competitive ability. 4. Genetic spatial autocorrelation analysis identified males as the more dispersing sex. Furthermore, overproduction of males by mothers in the rainforest habitat was geographically concordant with reduced philopatry, as inferred from spatial genetic analysis. This provides empirical validation of dispersal-related explanations of offspring sex allocation: that production of offspring of the dispersing sex minimizes the potential for resource competition with kin. 5. Spatial variation in dispersal via sex allocation responses to environmental heterogeneity can potentially contribute to spatial patterns in population dynamics.  相似文献   

11.
In a verbal model, Trivers and Willard proposed that, whenever there is sexual selection among males, natural selection should favor mothers that produce sons when in good condition but daughters when in poor condition. The predictions of this model have been the subject of recent debate. We present an explicit population genetic model for the evolution of a maternal-effect gene that biases offspring sex ratio. We show that, like local mate competition, sexual selection favors female-biased sex ratios whenever maternal condition affects the reproductive competitive ability of sons. However, Fisherian sex-ratio selection, which favors a balanced sex ratio, is an opposing force. We show that the evolution of maternal sex-ratio biasing by these opposing selection forces requires a positive covariance across environments between the sex-ratio bias toward sons (b) and the mating success of sons (r). This covariance alone is not a sufficient condition for the evolution of maternal sex-ratio biasing; it must be sufficiently positive to outweigh the opposing sex-ratio selection. To identify the necessary and sufficient conditions, we partition total evolutionary change into three components: (1) maternal sex-ratio bias, (2) sexual selection on sons, and (3) sex-ratio selection. Because the magnitude of the first component asymmetrically affects the strength of the second, biasing broods toward females in a poor environment evolves faster than the same degree of bias toward males in a good environment. Consequently, female-biased sex ratios, rather than male-biased sex ratios, are more likely to evolve. We discuss our findings in the context of the primary sex-ratio biases observed in strongly sexually selected species and indicate how this perspective can assist the experimental study of sex ratio evolution.  相似文献   

12.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

13.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

14.
Fertility of backcross triploid hybrids containing one genome of Prussian carp and two genomes of common carp is investigated. The females of hybrids of Prussian carp and common carp (Prussian × common carp) are prolific and produce diploid gametes. Since males of such hybrids are sterile, their reproduction is realized by means of induced gynogenesis. Triploid progeny is obtained by backcrossing female Prussian × common carp with carp males. Among triploids obtained from hybrids F1 and among hybrids of the first gynogenetic generation, there were no prolific specimens. However, in reproduction of diploid hybrids by means of gynogenesis during six generations, the female fertility in the backcross progeny is restored. From backcross triploid females (daughters of Prussian × common carp of the sixth gynogenetic generation), a viable triploid gynogenetic progeny and a tetraploid backcross (by carp) progeny are obtained. The obtained data may be considered as the experimental proof of the hypothesis of reticular speciation.  相似文献   

15.
Yolk androgens affect offspring hatching, begging, growth and survival in many bird species. If these effects are sex-specific, yolk androgen deposition may constitute a mechanism for differential investment in male and female offspring. We tested this hypothesis in zebra finches. In this species, females increase yolk-testosterone levels and produce male-biased sex ratios when paired to more attractive males. We therefore predicted that especially sons benefit from elevated yolk androgens. Eggs were injected with testosterone or sesame oil (controls) after 2 days of incubation. Testosterone had no clear effect on sex-specific embryonic mortality and changed the pattern of early nestling mortality independent of offspring sex. Testosterone-treated eggs took longer to hatch than control eggs. Control males begged significantly longer than females during the first days after hatching and grew significantly faster. These sex differences were reduced in offspring from testosterone-treated eggs due to prolonged begging durations of daughters, enhanced growth of daughters and reduced growth of sons. The results show that variation in maternal testosterone can play an important role in avian sex allocation due to its sex-specific effects on offspring begging and growth.  相似文献   

16.
In order to investigate whether meiotic gynogenetic Atlantic cod is fertile and able to produce viable offspring, meiotic gynogenetic females were produced in spring 2010 by activating cod eggs using irradiated sperm. The extrusion of the second polar body was prevented by the application of hydrostatic pressure (56.6 MPa) 36 min after fertilization. In February 2012, their mean round weight was 972 g, and 2580 g in March 2013. In 2012, when the fish were 2 years old, about 52% were mature, 33% were immature, and 13% had undifferentiated gonads. One year later, 77% were mature, 11% were immature, and 11% had undifferentiated gonads. Several of the mature females had malformed gonads, with only one developed ovary lobe or with the two lobes fused. The mean gonadosomic index (GSI) of the 2‐year‐old mature females was 5.2%, with an estimated relative fecundity of 581 000 eggs kg ovary‐free wet weight?1. Females were stripped for eggs when 2 and 3 years old (2012 and 2013), and fertilized with sperm from normal males. Offspring were obtained from 12 of 17 and 12 of 15 egg batches incubated in 2012 and 2013, respectively, proving that the gynogenetic females are fertile. Furthermore, larvae in all but one of the hatched groups from 2013 had commenced feeding 2 h after being startfed using rotifers 4 days after hatch, indicating viable offspring.  相似文献   

17.
Sex allocation theory has long generated insights into the nature of natural selection. Classical models have elucidated causal phenomena such as local mate competition and inbreeding on the degree of female bias exhibited by various invertebrates. Typically, these models assume mothers facultatively adjust sex allocation using predictive cues of future offspring mating conditions. Here we relax this assumption by developing a sex allocation model for haplodiploid mothers experiencing local mate competition that lay a fixed number of male eggs first. Female egg number is determined by remaining oviposition sites or remaining eggs of the mother, depending on which is exhausted first. Our model includes parameters for variation in foundress number, patch size, fecundity and offspring mortality that allow us to generate secondary sex ratio predictions based on specific parameterizations for natural populations. Simulations show that: 1) in line with classical models, factors that increase sib‐mating result in mothers laying relatively more female eggs; 2) high offspring mortality leads to relatively more males as fertilization insurance; 3) unlike classical model predictions, sub‐optimal predictions, such as more males than females are possible. In addition, our model provides the first quantitative predictions for the expected number of males and females in a patch where typically only one mother utilizes a given patch. We parameterized the model with data obtained from seven species of southern African fig wasps to predict expected means and variances for numbers of male and female offspring for typical numbers of mothers utilizing a patch. These predictions were compared to secondary sex ratio data from single foundress patches, the most commonly encountered situation for these species. Our predictions matched both the observed number and variance of male and female offspring with a high degree of accuracy suggesting that facultative adjustment is not required to produce evolutionary stable sex ratios.  相似文献   

18.
To study the coexistence of sexual and gynogenetic forms, we examined the population structure of a gynogenetic complex of the Japanese crucian carp, Carassius auratus Temminck et Schlegel, during the April–June reproductive season by collecting 1225 mature fish that migrated from Lake Suwa to a tributary river for spawning. There were more sexual fish (about 80%) than gynogenetic fish in this complex, and the operational sex ratio in the sexual form was female biased (males were about 20%). Mean standard length and body weight of sexual females were larger than those of sexual males. Sex ratio was male biased in smaller fish (standard length, <8.5 cm) but female biased in larger fish (standard length, ≥8.5 cm). We determined age by scale ring marks; the average age of sexual females was higher than that of males, but there was no significant difference in the average age between sexual and gynogenetic females. Sex ratio in the sexual form was more female biased for old than for young fish, and the mean size of sexual females was larger than that of males of the same age. The clear female-biased sex ratio and age difference between sexual females and males can be explained either by (1) higher mortality of males or by (2) female-biased sex allocation. The latter process reduces the disadvantage of sex and contributes to the coexistence of sexual and gynogenetic forms. Received: November 24, 2000 / Accepted: March 6, 2001  相似文献   

19.
Summary An efficient method has been developed for the production of gynogenetic paradise fish in order to obtain genetically homogeneous strains in a relatively short period. Diploidy of the gynogenetic embryos was restored by inhibition of the second meiotic division, and consecutive generations of normal, fully viable offspring were reared. Crossing-over frequencies and the relative positions of four marker loci were determined by analysing electrophoretic patterns of serum transferrin and esterases in the gynogenetic progeny of heterozygous females.  相似文献   

20.
Facultative investment in offspring sex is related to maternal condition in many organisms. In mammals, empirical support for condition-dependent sex allocation is equivocal, and there is some doubt as to theoretical expectations. Much theory has been developed to make predictions for condition-dependent sex ratios in populations with discrete generations. However, the extension of these predictions to populations with overlapping generations (OLGs; e.g., mammals) has been limited, leaving doubt as to the specific prediction for maternal-condition-dependent sex ratios in mammals. We develop a population genetics model that incorporates maternal effects on multiple offspring fitness components in a population with OLGs. Using a rare-gene and evolutionarily stable strategy approach, we demonstrate that sex ratio predictions of this model are identical to those for equivalent discrete generations models. We show that the predicted sex ratios depend on the sex-specific ratio of R(o) (offspring lifetime fitness) for offspring of good and poor mothers. This offspring lifetime fitness rule indicates that empirical research on conditional sex ratios should consider all three components of offspring R(o) (juvenile survival, adult life span, and fertility).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号