首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An outdoor experiment was conducted to study the competitionbetween Sulphate Reducing Bacteria (SRB) and Methanogenic Archaea (MA) in anaerobictreatment phase of tannery wastewater treatment in pilot-scale Advanced FacultativePond (AFP). The relative electron flow towards sulphate reduction was higher (59–83%) than towardsmethanogenesis (17–41%), although the COD recovery within thereactor varied between 15 and 90%. The results also demonstrated that the flow of electrons towards SRBincreased with increase of the sulphate concentration and decrease of the COD : SO4 = ratio.  相似文献   

2.
Three pilot subsurface wastewater infiltration systems filled with the same mixed matrix made of 80% brown soil and cinder at a weight of 20% were constructed in the laboratory. All systems worked successfully in the intermittent feeding mode with total hydraulic loading of 4 m3/(m2 d) for over 2 months, with the optimal parameters of shunt ratio of 1:1 and shunt position at the depth of 0.7 m was achieved on the basis of large amounts of experimental data. The experiment results showed that shunt distributing wastewater could significantly improve the nitrogen removal in the subsurface infiltration system and the average removal rates of TN and NH4-N increased by 10% and 5.67%, respectively. Shunt distributing wastewater had little influence on the removal rates of COD and TP. The results suggested that shunt distributing wastewater was simple and effective for nitrogen removal.  相似文献   

3.
4.
Two experimental high rate algal ponds (HRAPs) (1.5m2, 570 L per unit), each with a secondaryclarifier for algal biomass separation (0.025 m2,without recirculation), were fed with urban wastewaterfor a one-year period (June 1993 to July 1994). TheHRAPs were installed on the roof of the Department ofHydraulic, Coastal and Environmental Engineering ofthe Technical University of Catalonia, Barcelona,Spain (lat. 41° 24 42 N; long. 2° 742 E). Nitrogen removal efficiency and changes intotal nitrogen, total organic nitrogen,NH4 +-N, and oxidized nitrogen underdifferent hydraulic retention times (HRTs) werecompared. HRAP A was always operated at a higherHRT than HRAP B. Both HRAPs were subjected to thesame environmental conditions of solar radiation, airtemperature and influent water quality. Grab samplesof influent, effluent of the HRAP (mixed liquor) andfinal effluent from the clarifiers were taken once aweek. The annual average nitrogen removal was 73% forHRAP A, and 57% for HRAP B. Higher removal in HRAP Awas due to a lower inorganic nitrogen concentration inits effluent. Significant differences (p> 0.05) inthe relative proportions of nitrogen forms between thetwo HRAPs were observed only in autumn and winter.This was mainly because HRAP B did not achieve a highlevel of NH4 +-N removal by stripping andalgal uptake, as observed in HRAP A. NH4 +-Nstripping was the most important mechanism fornitrogen removal (mean efficiency of 47% and 32% inHRAP A and B, respectively) followed by algal uptake,and subsequent algal separation in the clarifiers(mean efficiency of 26% and 25% in HRAP A and Brespectively). The conclusion of this study is thatHRT determines both the nitrogen removal efficiencyand the distribution of nitrogen forms in the effluentof a HRAP. The nitrogen removal level can becontrolled through suitable HRT operating strategies.By operating at a HRT of 4 days in spring and summer,and 10 days in autumn and winter, nitrogenconcentration in the effluent of a HRAP system can bereduced to less than 15 mg L-1 N.  相似文献   

5.
The performance of a macroalgae (Sargassum sp.), a laboratory-cultivated microalgae (Chlorococcum sp.) and a commercially available granulated activated carbon (GAC) for the removal of copper (Cu) and chromium (Cr) from aqueous solutions was evaluated using batch experiments. Kinetic and isotherm experiments were done at the optimal pH of 4.5 ± 0.1 for Cu (II) and 2.0 ± 0.1 for Cr (total). The equilibrium isotherms were determined and the results were analyzed using the Langmuir and Freundlich models. The best Cu removal performance was observed on Sargassum at a maximum removal of 87.3% obtained for an initial concentration of 20 mg L?1 Cu. The maximum uptake capacities for Cu (II) were 71.4, 19.3 and 11.4 mg g?1 of Sargassum, Chlorococcum and GAC, respectively. The biosorbents were also able to remove appreciable amounts of Cr, again with Sargassum showing maximum uptake capacity over the other materials. Kinetic studies also reveal that the removal rate is faster for both metals in Sargassum. Tests with an actual wastewater confirm the maximum uptake capacity of Cu by Sargassum. In all experiments the Sargassum biofilter outperformed GAC, which makes it a promising low-cost alternative to conventional filtration materials for wastewater treatment.  相似文献   

6.
Li H  Liu T  Li Z  Deng L 《Bioresource technology》2008,99(7):2234-2241
The main goal of this study was to exploit low-cost and efficient sorbents for the removal and recovery of Cr(VI) in wastewater. Three supports of sawdust, polyurethane and alginate were applied to immobilize living and dead R. cohnii cells, respectively. There was a distinct increase in the Cr(VI) removal efficiency before and after the HCl-pretreatment. Langmuir adsorption isotherm model was well used to describe the distribution of Cr(VI) between the liquid and solid phases in batch studies. The values of q0 predicted by Thomas model were near to experimental ones in the experiments of packed column. The breakthrough curves calculated with this model were consistent well with experimental ones at a largely extent. Desorption, regeneration and reuse of the packed column were studied. After 5 cycles, adsorption capacity was still kept at higher level, reaching to 91.4, 87.9, 91.4 and 93.3mg/l contrasted with the first cycle (94.1, 90.4, 94.8 and 98.5mg/l) and the desorption efficiency were 85.0%, 96.2%, 93.4% and 91.4% compared with the first cycle (87.6%, 95.4%, 96.7% and 94.3%), corresponding to living cells immobilized with sawdust, polyurethane, and dead cells immobilized with polyurethane and alginate, respectively. The results indicated that the packed columns with the immobilized living and dead R. cohnii cells were the better option to adsorb, desorb and recover Cr(VI) from wastewater.  相似文献   

7.
Microalgae are photosynthetic microorganisms with potential for biofuel production, CO2 mitigation and wastewater treatment; indeed they have the capacity to assimilate pollutants in wastewaters. Light supply and distribution among the microalgae culture is one of the major challenges of photo-bioreactor design, with many studies focusing on microalgae culture systems such as raceway ponds (RWP), widely used and cost-effective systems for algal biomass production. This review focuses on possible improvements of the RWP design in order to achieve optimal microalgal growth conditions and high biomass productivities, to minimize energy consumption and to lower the capital costs of the pond. The improvement strategy is based on three aspects: (1) hydrodynamic characteristics of the raceway pond, (2) evaluation of hydrodynamic and mass transfer capacities of the pond and (3) design of the RWP. Finally, a possible optimal design for the RWP is discussed in the context of wastewater treatment.  相似文献   

8.
Gál  Dénes  Szabó  Pál  Pekár  Ferenc  Váradi  László 《Hydrobiologia》2003,506(1-3):767-772
Hydrobiologia - A combined intensive-extensive fishpond system developed for the purification and re-use of intensive fishpond effluent water was studied during a three-year experimental period....  相似文献   

9.
10.
The aim of this work was to assess the efficacy for simultaneous enhanced removal of nitrogen and phosphorus including organics treating combined wastewater generated from a chemical laboratory using a bench-scale Intermittent Cyclic Process Bio-reactor (ICPBR). The performance efficacy indicated that the ICPBR system with solid retention time of 15 days achieved optimum efficiency with an overall removal of ammonia nitrogen (NH4-N), phosphorus (PO4-P), and chemical oxygen demand (COD) in the range, 83-92%, 74-93%, and 90-96%, respectively.  相似文献   

11.
Chen Y  Gu G 《Bioresource technology》2005,96(15):1722-1729
Biological treatment of Cr(VI)-containing wastewater has drawn much attention recently as a method to treat environmental Cr(VI) contamination. The activated sludge method, due to its convenient operation and easy-to-scale-up, has been widely applied to treat municipal wastewater and some industrial wastewaters. In order to develop a suitable technique using activated sludge as the biomass to continuously remove Cr(VI) from wastewater, this paper investigated in short-term batch experiments the environmental elements affecting chromium biological removal from synthetic wastewater. The dissolved oxygen (DO), Cr(VI) initial concentration, biomass density, temperature, glucose content in the influent and contact time were observed to strongly influence chromium removal. It was found that the chromium removal efficiency decreased with the increase of DO and Cr(VI) initial concentration as well as glucose content in the feed, but increases in temperature and contact time improved the chromium removal efficiency. Although raising biomass concentration resulted in an increased chromium removal efficiency under both anaerobic and aerobic conditions, its influence on specific chromium removal was not significant.  相似文献   

12.
Recently, an increasing application of so called advanced oxidation processes (AOPs) to industrial wastewater has been observed. In particular, an integrated approach of biological and chemical treatment of wastewater is advantageous conceptually. The subject of our study was synthetic wastewater, simulating effluents from knitting industry. The wastewater contained components that are very often used in Polish textile industry: an anionic detergent Awiwaz KG conc., a softening agent Tetrapol CLB and an anthraquinone dyestuff-Acid Blue 40, CI 2125. The toxicity of the detergents and the dye was determined in terms of effective concentration EC50 using mixed cultures of activated sludge as well as pure culture of luminescent bacteria Vibrio fischerii NRRLB-11177. The dye did not undergo biodegradation without AOPs pretreatment, therefore a degree of its removal (decolourisation) by the AOPs has been determined and its bio-sorption properties on the flocks of activated sludge have been studied. The dye adsorption onto flocks of activated sludge was described by Henry's isotherm. Our investigations focussed on the influence of various oxidants like O3, H2O2 and UV light on biodegradation of single components aqueous solution as well as of the whole textile wastewater. The results of kinetic measurements of the biodegradation (by means of acclimated activated sludge) was described by Monod type of kinetic equation. The experimental evidence of the positive effect of chemical oxidation pretreatment on the biodegradation of recalcitrant compounds was quantified by estimation of the kinetic parameters of the Monod equation. Due to the AOPs pretreatment a decrease of the Monod constant and an increase of maximal specific growth rate was observed. The activity of degradative enzymes of activated sludge was assayed by the methods of 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazolium chloride test.  相似文献   

13.
J Kato  K Yamada  A Muramatsu  Hardoyo    H Ohtake 《Applied microbiology》1993,59(11):3744-3749
The ability of Escherichia coli MV1184 to accumulate inorganic phosphate (Pi) was enhanced by manipulating the genes involved in the transport and metabolism of Pi. The high-level Pi accumulation was achieved by modifying the genetic regulation and increasing the dosage of the E. coli genes encoding polyphosphate kinase (ppk), acetate kinase (ackA), and the phosphate-inducible transport system (pstS, pstC, pstA, and pstB). Acetate kinase was employed as an ATP regeneration system for polyphosphate synthesis. Recombinant strains, which contained either pBC29 (carrying ppk) or pEP02.2 (pst operon), removed approximately two- and threefold, respectively, more Pi from minimal medium than did the control strain. The highest rates of Pii removal were obtained by strain MV1184 containing pEP03 (ppk and ackA). However, unlike the control strain, MV1184 (pEP03) released Pi to the medium after growth had stopped. Drastic changes in growth and Pi uptake were observed when pBC29 (ppk) and pEP02.2 (pst operon) were introduced simultaneously into MV1184. Even though growth of this recombinant was severely limited in minimal medium, the recombinant could remove approximately threefold more Pi than the control strain. Consequently, the phosphorus content of this recombinant reached a maximum of approximately 16% on a dry weight basis (49% as phosphate).  相似文献   

14.
Activated sludge processes with alternating anaerobic and aerobic conditions (the anaerobic-aerobic process) have been successfully used for enhanced biological phosphate removal (EBPR) from wastewater. It is known that polyphosphate-accumulating bacteria (PAB) play an essential role for EBPR in the anaerobic-aerobic process. The present paper reviews limited information available on the metabolism and the microbial community structure of EBPR, highlighting the microbial ecological selection of PAB in EBPR processes. Exposure of microorganisms to alternate carbon-rich anaerobic environments and carbon-poor aerobic environments in the anaerobic-aerobic process induces the key metabolic characteristics of PAB, which include organic substrate uptake followed by its conversion to stored polyhydroxyalkanoate (PHA) and hydrolysis of intracellular polyphosphate accompanied by subsequent Pi release under anaerobic conditions. Intracellular glycogen is assumed to function as a regulator of the redox balance in the cell. Storage of glycogen is a key strategy for PAB to maintain the redox balance in the anaerobic uptake of various organic substrates, and hence to win in the microbial selection. Acinetobacter spp., Microlunatus phosphovorus, Lampropedia spp., and the Rhodocyclus group have been reported as candidates of PAB. PAB may not be composed of a few limited genospecies, but involve phylogenetically and taxonomically diverse groups of bacteria. To define microbial community structure of EBPR processes, it is needed to look more closely into the occurrence and behavior of each species of PAB in various EBPR processes mainly by molecular methods because many of PAB seem to be impossible to culture.  相似文献   

15.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

16.
Enhanced biological phosphorus removal (EBPR) from wastewater can be more-or-less practically achieved but the microbiological and biochemical components are not completely understood. EBPR involves cycling microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve a selection of microorganisms with high capacity to accumulate polyphosphate intracellularly in the aerobic period. Biochemical or metabolic modelling of the process has been used to explain the types of carbon and phosphorus transformations in sludge biomass. There are essentially two broad-groupings of microorganisms involved in EBPR. They are polyphosphate accumulating organisms (PAOs) and their supposed carbon-competitors called glycogen accumulating organisms (GAOs). The morphological appearance of microorganisms in EBPR sludges has attracted attention. For example, GAOs as tetrad-arranged cocci and clusters of coccobacillus-shaped PAOs have been much commented upon and the use of simple cellular staining methods has contributed to EBPR knowledge. Acinetobacter and other bacteria were regularly isolated in pure culture from EBPR sludges and were initially thought to be PAOs. However, when contemporary molecular microbial ecology methods in concert with detailed process performance data and simple intracellular polymer staining methods were used, a betaproteobacteria called ‘Candidatus Accumulibacter phosphatis’ was confirmed as a PAO and organisms from a novel gammaproteobacteria lineage were GAOs. To preclude making the mistakes of previous researchers, it is recommended that the sludge ‘biography’ be well understood – i.e. details of phenotype (process performance and biochemistry) and microbial community structure should be linked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Chen Y  Gu G 《Bioresource technology》2005,96(15):1713-1721
The long-term continuous chromium(VI) removal from synthetic wastewater affected by influent hexavalent chromium (Cr(VI)) and glucose concentrations were studied with an anaerobic-aerobic activated sludge process. It was observed that before activated sludge was acclimated, the chromium in the effluent increased immediately as the influent chromium increased. However, both Cr(VI) and total chromium (TCr) in the effluent significantly decreased after acclimation. In the acclimated activated sludge, the chromium removal efficiency was 100% Cr(VI) and 98.56% TCr at influent Cr(VI) levels of 20 mg/day, 100% Cr(VI) and 98.92% TCr at influent Cr(VI) levels of 40 mg/day, and 98.64% Cr(VI) and 97.16% TCr at influent Cr(VI) levels of 60 mg/day. The corresponding effluent Cr(VI) and TCr concentrations were 0 and 0.012 mg/l, 0 and 0.018 mg/l, and 0.034 mg/l and 0.071 mg/l, respectively. When the influent glucose increased from 1125 to 1500 mg/l at influent Cr(VI) dosage of 60 mg/day, the Cr(VI) and TCr removal efficiency with the acclimated activated sludge improved from 98.64% and 97.16% to 100% and 98.48%, respectively, and the chromium concentration in the effluent decreased from 0.034 mg/l of Cr(VI) and 0.071 mg/l of TCr to 0 (Cr(VI)) and 0.038 mg/l (TCr). The effluent COD and turbidity was around 40 mg/l and 0, respectively, after the activated sludge was acclimated. Further studies showed that after the activated sludge was acclimated, its specific dehydrogenases activity (SDA) and protein contents increased. The SDA and protein increased respectively 15% and 10% when influent Cr(VI) increased from 20 to 60 mg/day.  相似文献   

18.
宽叶香蒲净化塘系统净化铅/锌矿废水效应的研究   总被引:30,自引:1,他引:29  
研究了以宽叶香蒲(Typha latifolia)为优势群落的净化塘系统来处理广东韶关凡口铅/锌矿选矿废水。经5年多的监测结果表明,该系统能有效地净化铅/锌石广废水。在进入净化塘系统前,未处理的废水合有高浓度的悬浮物(4 635mg/L)和重金属[Fb(1.61mg/L)、Zn(1.96mg/L)和Cd(0.022mg/L)]等,经过净化后,水质明显改善,pH从8.03下降到7.74,总悬浮物去除率达99%,Pb去除率为90%,Zn和Cd去除率为84%,其它重金属如Cu、Fe和Al等也都有不同程度的降低。  相似文献   

19.
To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C.  相似文献   

20.
The treatment capacity of an integrated constructed wetland system (CWS) that was designed to reduce nitrogen (N) from secondary effluent was explored. The integrated CWS consisted of vertical-flow constructed wetland, floating bed and sand filter. The vertical-flow wetland was filled with gravel, steel slag and peat from the bottom to the top. Vetiver zizanioides was selected to grow in the vertical-flow constructed wetland and Coix lacrymajobi L. was grown in the floating bed. The results showed that the integrated CWS displayed superior removal efficiency for nitrate nitrogen (NO3-N), ammonia nitrogen (NH4+-N), nitrite nitrogen (NO2-N), and total nitrogen (TN). The average NO3-N, NO2-N, NH4+-N and TN removal efficiencies of the integrated CWS were 98.83%, 95.60%, 98.05% and 92.41%, respectively, during the whole experimental operation. The integrated CWS may have a good potential for removing N from secondary effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号