共查询到20条相似文献,搜索用时 0 毫秒
1.
Wulf Paschen Jens Doutheil Cornelia Gissel Marek Treiman 《Journal of neurochemistry》1996,67(4):1735-1743
Abstract: We have used thapsigargin (TG), a specific, irreversible inhibitor of endoplasmic reticulum (ER) Ca2+ -ATPases, and caffeine, an agonist of the ryanodine receptor, to study the effect of emptying of ER calcium stores on protein synthesis in neuronal cells. TG at 1 µ M caused a permanent inhibition of protein synthesis in hippocampal slices from 3-week-old rats but no inhibition in slices prepared from 2-month-old animals. Caffeine at 10 m M caused a reduction of protein synthesis in both 3-week- and 2-month-old rats immediately after exposure, but complete recovery of protein synthesis occurred within 30 min after treatment. In neuronal cells, TG produced an almost complete inhibition of protein synthesis that was only partially reversed over a 24-h recovery period. TG did not significantly affect neuronal ATP levels or energy charge. Fifty percent inhibition of protein synthesis was achieved with ∼5 n M TG. Recovery of protein synthesis after TG treatment was significantly hindered when serum was omitted from the medium after TG exposure, suggesting that serum promotes recovery of ER calcium homeostasis. It is concluded that TG is a suitable tool for the study of the mechanisms of protein synthesis inhibition after transient cerebral ischemia. The possibility that disturbances in ER calcium homeostasis may contribute to the pathological process of ischemic cell death is discussed. 相似文献
2.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+ -ATPase. Tg-induced rise in [Ca2+ ]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+ ]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury. 相似文献
3.
钙离子信号与细胞凋亡 总被引:19,自引:1,他引:19
细胞凋亡的分子机制是什么?这个问题当前引起人们广泛的研究兴趣。作为重要的第二信使,钙信号在许多生理和细胞活动中都起到了十分重要的作用。钙信号是否也在凋亡的调控中起作用呢?虽然在过去十多年中,许多研究证据都表明钙信号参与凋亡的调控,但是,钙信号如何作用于凋亡过程的具体机理仍然是众说纷纭。事实上,许多研究结果仍存有争议。文章总结了近几年来大量关于钙信号与凋亡研究的成果,集中讨论了两个问题:1)在凋亡前期“决定阶段”有没有钙离子信号的参与?2)钙离子信号与哪些凋亡调控因子(包括Bcl-2族蛋白)相互作用及如何作用?这问题还牵涉到亚细胞结构中钙库的作用(包括细胞质、内质网和线粒体)。根据作者自己的实验结果,文章对这些文献中不同的说法作了一些具体的评估。最后,文章还提出了一个钙离子信号参与调控细胞凋亡的可能模型。 相似文献
4.
Roles of Thapsigargin-Sensitive Ca2+ Stores in the Survival of
Developing Cultured Neurons 总被引:1,自引:0,他引:1
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons. 相似文献
5.
Wei H Leeds P Chen RW Wei W Leng Y Bredesen DE Chuang DM 《Journal of neurochemistry》2000,75(1):81-90
We have studied neurotoxicity induced by pharmacological concentrations of 3-hydroxykynurenine (3-HK), an endogenous toxin implicated in certain neurodegenerative diseases, in cerebellar granule cells, PC12 pheochromocytoma cells, and GT1-7 hypothalamic neurosecretory cells. In all three cell types, the toxicity was induced in a dose-dependent manner by 3-HK at high micromolar concentrations and had features characteristic of apoptosis, including chromatin condensation and internucleosomal DNA cleavage. In cerebellar granule cells, the 3-HK neurotoxicity was unaffected by xanthine oxidase inhibitors but markedly potentiated by superoxide dismutase and its hemelike mimetic, MnTBAP [manganese(III) tetrakis(benzoic acid)porphyrin chloride]. Catalase blocked 3-HK neurotoxicity in the absence and presence of superoxide dismutase or MnTBAP. The formation of H(2)O(2) was demonstrated in PC12 and GT1-7 cells treated with 3-HK, by measuring the increase in the fluorescent product, 2',7'-dichlorofluorescein. In both PC12 and cerebellar granule cells, inhibitors of the neutral amino acid transporter that mediates the uptake of 3-HK failed to block 3-HK toxicity. However, their toxicity was slightly potentiated by the iron chelator, deferoxamine. Taken together, our results suggest that neurotoxicity induced by pharmacological concentrations of 3-HK in these cell types is mediated primarily by H(2)O(2), which is formed most likely by auto-oxidation of 3-HK in extracellular compartments. 3-HK-induced death of PC12 and GT1-7 cells was protected by dantrolene, an inhibitor of calcium release from the endoplasmic reticulum. The protection by dantrolene was associated with a marked increase in the protein level of Bcl-2, a prominent antiapoptotic gene product. Moreover, overexpression of Bcl-2 in GT1-7 cells elicited by gene transfection suppressed 3-HK toxicity. Thus, dantrolene may elicit its neuroprotective effects by mechanisms involving up-regulation of the level and function of Bcl-2 protein. 相似文献
6.
Anti-apoptotic Bcl-2 localizes in the membranes of mitochondria and endoplasmic reticulum (ER) and resists a broad range of apoptotic stimuli. However, the precise function of Bcl-2 in ER is still unclear. We herein examined the anti-apoptotic potencies of Bcl-2 in mitochondria and ER in vitro. The mitochondria isolated from HeLa cells, which have little or practically no Bcl-2, were apoptosis-competent. That is, membrane-bound Bax was activated and cytochrome c was released when the isolated mitochondria were incubated at 35 degrees C. Cytochrome c release from the apoptosis-competent mitochondria was suppressed by co-incubation with the mitochondria with overexpressed Bcl-2 (Bcl-2 mitochondria), suggesting that Bcl-2 anchored in one mitochondrion can suppress cytochrome c release from another mitochondrion. Similar results were obtained when microsomes with overexpressed Bcl-2 (Bcl-2 microsomes) were co-incubated with apoptosis-competent mitochondria. A quantitative titration analysis showed that Bcl-2 in the ER suppresses cytochrome c release as efficiently as that in the mitochondria. An immunoprecipitation assay showed that Bcl-2 in both mitochondria and ER binds to Bax at almost the same degree. However, in the presence of tBid, co-incubation of apoptosis-competent mitochondria with Bcl-2 microsomes, but not with Bcl-2 mitochondria, diminished the Bax-binding to Bcl-2 significantly, suggesting that Bcl-2 in ER is readily inactivated by tBid. Co-incubation assay further confirmed that Bcl-2 in the ER, but not Bcl-2 in the mitochondria, is potentially inactivated by tBid. Our quantitative in vitro studies indicate that Bcl-2 in mitochondria and ER are similarly potent in inhibiting Bax-associated apoptosis of other mitochondria, but are regulated by tBid differently. 相似文献
7.
Hans Werner Mülller Patric A. Clapshaw Wilfried Seifert 《Journal of neurochemistry》1981,37(4):947-955
The enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, EC 3.1.4.37) occurs not only in myelin fractions and glial cells, but can also be shown to be present in a CNS cell line of neuronal origin (B104). Direct immunofluorescence microscopy of B104 cells with fluorescein isothiocyanate-conjugated rabbit anti-CNPase antibodies shows a discrete and specific intracytoplasmic location of CNPase. Fractionation of the cells was performed by differential centrifugation of a cell homogenate and continuous sucrose density-gradient centrifugation. As monitored by marker enzyme activities, CNPase seems to be associated with endoplasmic reticulum membranes. 相似文献
8.
Involvement of Bcl-2 Family and Caspase-3-Like Protease in NO-Mediated Neuronal Apoptosis 总被引:14,自引:6,他引:14
Michio Tamatani Satoshi Ogawa Youichirou Niitsu Masaya Tohyama 《Journal of neurochemistry》1998,71(4):1588-1596
Abstract: To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1β with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1β was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N G -monomethyl- l -arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of BCl-2 and up-regulation of Bax protein levels. 相似文献
9.
Clark W. Distelhorst 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(11):1795-1804
Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune response, protecting against cell death, and then decline as apoptosis ensues and the immune response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known about the mechanism of Bcl-2's control over IP3R-mediated Ca2+ release and cell death induction. Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic approach for different types of cancer. Moreover, the successful development of ABT-199 (Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 (Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death. 相似文献
10.
Wan Q Kuang E Dong W Zhou S Xu H Qi Y Liu Y 《Apoptosis : an international journal on programmed cell death》2007,12(2):319-328
Reticulon3 (RTN3), firstly isolated from the retina and widely expressed in human tissues with the highest expression in the
brain, is presumed to play an important role in the developing axons through the transport of liquids and proteins. We have
identified and characterized RTN3 as a RTN4B/ASY interaction protein. Here we demonstrated that ER-stress activated RTN3 expression.
CHOP and ATF6 were sufficient to up-regulate the expression of RTN3. The down-regulation of RTN3 would induce apoptosis and
attenuate the anti-apoptotic activity of Bcl-2, indicating RTN3 was required for the cellular survival and optimal anti-apoptotic
activity of Bcl-2. Our present studies also indicated ER-stress induced RTN3 up-regulation could trigger Bcl-2 translocation
from ER to mitochondria. Moreover, the previous studies showed that RTN4B was also a Bcl-2-interacted protein. We found that
RTN3 and RTN4B could block the access of Bcl-2 to each other and thereafter determined the Bcl-2 subcellular distribution.
Taken together, our findings indicate that RTN3 is directly involved in the ER-constituents trafficking events through dually
acting as an essential and important ER-stress sensor, and a trigger for the Bcl-2 translocation.
Q. Wan and E. Kuang contributed equally to this work. 相似文献
11.
Prevarskaya N Skryma R Shuba Y 《Biochemical and biophysical research communications》2004,322(4):1326-1335
Ca2+ is a universal messenger regulating many physiological functions including such an important one, as the ability of the cell to undergo orderly self-destruction upon completion of its mission, called apoptosis. If this function is compromised unwanted cells may eventually take over the tissue turning it into a cancer. Ca2+ dependency of apoptosis, when its all aspects are learned and understood and key molecular players identified, may provide a good opportunity for controlling tumor growth. In the present mini-review we describe the major molecular determinants of Ca2+ homeostasis in prostate cancer cells and establish their role in the transformation to apoptosis-resistant cell phenotypes typical of advanced androgen-independent prostate cancer. We show that the hallmark of such transformation is the inhibition of apoptosis pathway associated with endoplasmic reticulum Ca2+ store depletion. 相似文献
12.
Rudner J Jendrossek V Belka C 《Apoptosis : an international journal on programmed cell death》2002,7(5):441-447
The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed. 相似文献
13.
While electro-acupuncture (EA) has been well known to contribute towards neuroplasticity occurring in both the central and
the peripheral nervous system after injury, the underlying mechanism remains largely unknown. This study evaluated the effects
and the possible mechanism of EA on neuronal apoptosis in the spinal cords of cats subjected to the removal of L1–L5 and L7–S2 dorsal root ganglion, sparing the L6 dorsal root ganglion. EA treatment decreased the number of TUNEL-positive apoptotic cells in lamina II of the L3 and L6 cord segments at 7 and 14 days post operation (dpo). This EA-mediated neuroprotection is associated with a decrease in the
number of Bax immunoreactive neurons and an increase in the number of Bcl-2 immunoreactive neurons. Furthermore, Western blot
and RT-PCR analysis revealed a significant downregulation of Bax protein and its mRNA, but an upregulation of Bcl-2 in the
dorsal horn of L3 and L6 cords at both 7 and 14 dpo. The present findings suggest that EA could inhibit neuronal apoptosis in dorsal root deafferentated
cat spinal cords, possibly by Bax downregulation and Bcl-2 upregulation.
Wei Zhao and Qi Zhao contributed equally to this work. 相似文献
14.
Kessel D 《Biochemical and biophysical research communications》2006,346(4):1320-1323
The drug salubrinal has been identified as an inhibitor of phosphatases that act on the eukaryotic translation initiation factor 2 subunit (eIF2alpha). The resulting maintenance of protein phosphorylation results in enhanced protection from the adverse effects of initiators of the unfolded protein response. We found that salubrinal can also interact with the anti-apoptotic protein Bcl-2, inhibiting binding of the non-peptidic antagonist HA14-1 and of a porphycene that can catalyze Bcl-2 photodamage. As a result, salubrinal offers protection from the apoptotic and autophagic effects that can result from loss of Bcl-2 function. 相似文献
15.
Inhibition of Mitochondrial Neural Cell Death Pathways by Protein Transduction of Bcl-2 Family Proteins 总被引:8,自引:0,他引:8
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer membrane pore formation, through which other pro-apoptotic proteins, e.g., cytochrome c, are released to the cytosol. Bcl-2 also exhibits an indirect antioxidant activity caused by a sub-toxic elevation of mitochondrial production of reactive oxygen species and a compensatory increase in expression of antioxidant gene products. While classic approaches to cytoprotection based on Bcl-2 family gene delivery have significant limitations, cellular protein transduction represents a new and exciting approach utilizing peptides and proteins as drugs with intracellular targets. The mechanism by which proteins with transduction domains are taken up by cells and delivered to their targets is controversial but usually involves endocytosis. The effectiveness of transduced proteins may therefore be limited by their release from endosomes into the cytosol. 相似文献
16.
C. Jane Hanson Martin D. Bootman Clark W. Distelhorst Richard J.H. Wojcikiewicz H. Llewelyn Roderick 《Cell calcium》2008,44(3):324-338
Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca(2+) within cells. In particular, Bcl-2 has been demonstrated to inhibit the release of Ca(2+) from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca(2+) release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T. Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca(2+) homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca(2+) responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca(2+) responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca(2+) uptake by raising the threshold cytosolic Ca(2+) concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca(2+) in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Ca(2+) pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) in our cells, and to modify the profile of InsP(3)R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca(2+) signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP(3)Rs. 相似文献
17.
Trubiani O Salvolini E Santoleri F D'Arcangelo C Spoto G Primio RD Mazzanti L 《The Journal of membrane biology》2005,204(2):77-84
A variety of cellular functions are modulated by the physical properties of the cell membrane, and the modification of intracellular transfer, resulting from loss of membrane integrity, may contribute toward setting the cell onto the pathway of apoptosis. Apoptosis in lymphoid cells can be induced in different ways and biochemical modifications occur at an early phase of cell death, while the morphological features of apoptosis are evident later. We previously reported that DMSO is an efficient apoptosis-inducing factor in the human RPMI-8402 pre-T cell line. The aim of the present study was to verify the effect of DMSO on the plasma membrane fluidity, the intracellular calcium concentration and the phosphodiesterase activity in DMSO-induced apoptosis. Our results show a modification of membrane fluidity associated with an increase of intracellular Ca2+ concentration. Moreover, we demonstrate that these modifications are related to a decrease in the phosphodiesterase (PDE) activity. The correlation between the proceedings of added DMSO and the induction of apoptosis will provide significant information regarding the first part of the apoptotic process. 相似文献
18.
构建重组载体质粒pMCEfrt—Bcl-2,利用FIp—In^TM定点重组系统,在CHO—dhfr^-细胞内定点整合人Bcl-2基因,通过Western印迹检测重组细胞Bcl-2蛋白的表达。通过流式细胞仪和DNA Ladder检测在高NH4C1条件下细胞的凋亡情况;用台盼蓝染色检测在无血清IMDM培养基中细胞的活细胞数目和活细胞比例。结果获得了稳定表达Bcl-2基因的细胞株CHO—Bcl-2,该细胞株能高水平表达Bcl-2蛋白。在无血清培养过程中,CHO—Bcl-2细胞比对照细胞保持高约15%的活细胞比例,细胞总数高25%。CHO-Bcl-2在高NH4^+(50mmol/L)培养条件下具有较低的凋亡水平。建立了能够高表达Bcl-2基因并具有一定的抗凋亡能力的重组CHO/dhfr^-细胞株。 相似文献
19.
Liu G Sun Y Li Z Song T Wang H Zhang Y Ge Z 《Biochemical and biophysical research communications》2008,370(4):651-656
Endoplasmic reticulum stress has been suggested to play a crucial role in the pathogenesis of diabetic complications. However, whether it is involved in the renal injury of diabetic nephropathy is still not known. We investigated the involvement of ER-associated apoptosis in kidney disease of streptozocin (STZ)-induced diabetic rats. We used albuminuria examination, hematoxylin & eosin (H&E) staining and TUNEL analysis to identify the existence of diabetic nephropathy and enhanced apoptosis. We performed immunohistochemistry, Western blot, and real-time PCR to analyze indicators of ER molecule chaperone and ER-associated apoptosis. GRP78, the ER chaperone, was up-regulated significantly in diabetic kidney compared to control. Furthermore, three hallmarks of ER-associated apoptosis, C/EBP homologous protein (CHOP), c-JUN NH2-terminal kinase (JNK) and caspase-12, were found to have activated in the diabetic kidney. Taken together, those results suggested that apoptosis induced by ER stress occurred in diabetic kidney, which may contribute to the development of diabetic nephropathy. 相似文献
20.
Protective Effect of Retinal Ischemia by Blockers of Voltage-dependent Calcium Channels and Intracellular Calcium Stores 总被引:1,自引:0,他引:1
Massote PD Pinheiro AC Fonseca CG Prado MA Guimarães AL Massensini AR Gomez MV 《Cellular and molecular neurobiology》2008,28(6):847-856
In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular
calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal
damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing
2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM)
and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular
calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively.
Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC
causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was
reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene
(100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological
analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB
partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia. 相似文献