首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

2.

Purpose

Pesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition of the delineation between the product system model (life cycle inventory—LCI, technosphere) and the natural environment (life cycle impact assessment—LCIA, ecosphere) is missing and could be established via consensus building.

Methods

A workshop held in 2013 in Glasgow, UK, had the goal of establishing consensus and creating clear guidelines in the following topics: (1) boundary between emission inventory and impact characterisation model, (2) spatial dimensions and the time periods assumed for the application of substances to open agricultural fields or in greenhouses and (3) emissions to the natural environment and their potential impacts. More than 30 specialists in agrifood LCI, LCIA, risk assessment and ecotoxicology, representing industry, government and academia from 15 countries and four continents, met to discuss and reach consensus. The resulting guidelines target LCA practitioners, data (base) and characterisation method developers, and decision makers.

Results and discussion

The focus was on defining a clear interface between LCI and LCIA, capable of supporting any goal and scope requirements while avoiding double counting or exclusion of important emission flows/impacts. Consensus was reached accordingly on distinct sets of recommendations for LCI and LCIA, respectively, recommending, for example, that buffer zones should be considered as part of the crop production system and the change in yield be considered. While the spatial dimensions of the field were not fixed, the temporal boundary between dynamic LCI fate modelling and steady-state LCIA fate modelling needs to be defined.

Conclusions and recommendations

For pesticide application, the inventory should report pesticide identification, crop, mass applied per active ingredient, application method or formulation type, presence of buffer zones, location/country, application time before harvest and crop growth stage during application, adherence with Good Agricultural Practice, and whether the field is considered part of the technosphere or the ecosphere. Additionally, emission fractions to environmental media on-field and off-field should be reported. For LCIA, the directly concerned impact categories and a list of relevant fate and exposure processes were identified. Next steps were identified: (1) establishing default emission fractions to environmental media for integration into LCI databases and (2) interaction among impact model developers to extend current methods with new elements/processes mentioned in the recommendations.
  相似文献   

3.
In literature, many models (qualitatively as well as quantitatively) can be found to cope with the problem of communicating results of LCA analyses with decision takers. In a previous article of this Journal, an LCA-based single indicator for emissions is proposed: the ‘virtual pollution prevention costs ‘99’ (Vogtländer et al. 2000a). In this article, a single LCA-based indicator for sustainability is proposed. It builds on the virtual pollution prevention costs ‘99 for emissions, and adds the other two main aspects of sustainability: material depletion and energy consumption. This single indicator, the ‘virtual eco-costs ‘99’, is the sum of the marginal prevention costs of:
  • Material depletion, applying ‘material depletion costs’, to be reduced by recycling
  • Energy consumption, applying ‘eco-costs of energy’ being the price of renewable energy
  • Toxic emissions, applying the ‘virtual pollution prevention costs ‘99’
  • The calculation model includes ‘direct’ as well as ‘indirect’ environmental impacts. The main groups of ‘indirect’ components in the life cycle of products and services are:
  • Labour (the environmental impacts of office heating, lighting, computers, commuting, etc.)
  • production assets (equipment, buildings, transport vehicles, etc.)
  • To overcome allocation problems of the indirect components of complex product-service systems, a methodology of economic allocation has been developed, based on the so called Eco-costs/ Value Ratio (EVR) model. This EVR calculation model appears to be a practical and powerful tool to assess the sustainability of a product, a service, or a product-service combination.  相似文献   

    4.
    When looking at a product’s life cycle, emissions and resource uses, as well as the resulting impacts, usually occur at different points in time. For instance, construction materials are often ‘stored’ in buildings for many decades before they are recycled or disposed of. The goal of the LCA Discussion Forum 22 was to present and discuss arguments pro and contra a temporally differentiated weighting of impacts. The discussion forum started with three talks that illustrated the importance of temporal aspects in LCI and LCIA. The following two presentations discussed the economical principles of discounting, the adequacy of this concept within LCA, and the ethical questions involved. After one further short presentation, three groups were formed that discussed questions about temporally-differentiated weighting, and consequences for LCI as well as LCIA (damage assessment and final weighting). The discussion forum ended with the following conclusions: (a) long-term impacts should be considered in LCA, and (b) long-term emissions should be inventoried separately from short-term emissions. There was no consensus on whether short-term and long-term impacts should be weighted equally. Some prefer to weigh short-term emissions higher, because they are considered to be closer. Consistent and approved forecasts should be used when considering future changes in environmental conditions in LCI and LCIA.  相似文献   

    5.

    Purpose

    Numerous publications in the last years stressed the growing importance of nanotechnology in our society, highlighting both positive as well as in the negative topics. Life cycle assessment (LCA) is amongst the most established and best-developed tool in the area of product-related assessment. In order to use this tool in the area of nanotechnology, clear rules of how emissions of nanomaterials should be taken into account on the level of life cycle inventory (LCI) modelling are required—i.e. what elements and properties need to be reported for an emission of a nanomaterial. The objective of this paper is to describe such a framework for an adequate and comprehensive integration of releases of nanomaterials.

    Methods

    With a three-step method, additional properties are identified that are necessary for an adequate integration of releases of nanomaterials into LCA studies.

    Result and discussion

    In the first step, a comprehensive characterisation of the release of a nanomaterial is compiled—based on reviewing scientific publications, results from expert workshops and publications from public authorities and international organisations. In the second step, this comprehensive overview is refined to a list containing only those properties that are effectively relevant for LCA studies—i.e. properties that influence the impacts in the areas of human toxicity and ecotoxicity, respectively. For this, an academic approach is combined with a second, more practical, view point, resulting together in a prioritisation of this list of properties. Finally, in a third step, these findings are translated into the LCA language—by showing how such additional properties could be integrated into the current LCA data formats for a broader use by the LCA community.

    Conclusions

    As a compromise between scholarly knowledge and the (toxicological) reality, this paper presents a clear proposal of an LCI modelling framework for the integration of releases of nanomaterials in LCA studies. However, only the broad testing of this framework in various situations will show if the suggested simplifications and reductions keep the characterisation of releases of nanomaterials specific enough and/or if assessment is accurate enough. Therefore, a next step has to come from the impact assessment, by the development of characterisation factors as a function of size and shape of such releases.  相似文献   

    6.

    Purpose

    This work has two major objectives: (1) to perform an attributional life cycle assessment (LCA) of a complex mean of production, the main Peruvian fishery targeting anchoveta (anchovy) and (2) to assess common assumptions regarding the exclusion of items from the life cycle inventory (LCI).

    Methods

    Data were compiled for 136 vessels of the 661 units in the fleet. The functional unit was 1 t of fresh fish delivered by a steel vessel. Our approach consisted of four steps: (1) a stratified sampling scheme based on a typology of the fleet, (2) a large and very detailed inventory on small representative samples with very limited exclusion based on conventional LCI approaches, (3) an impact assessment on this detailed LCI, followed by a boundary-refining process consisting of retention of items that contributed to the first 95 % of total impacts and (4) increasing the initial sample with a limited number of items, according to the results of (3). The life cycle impact assessment (LCIA) method mostly used was ReCiPe v1.07 associated to the ecoinvent database.

    Results and discussion

    Some items that are usually ignored in an LCI’s means of production have a significant impact. The use phase is the most important in terms of impacts (66 %), and within that phase, fuel consumption is the leading inventory item contributing to impacts (99 %). Provision of metals (with special attention to electric wiring which is often overlooked) during construction and maintenance, and of nylon for fishing nets, follows. The anchoveta fishery is shown to display the lowest fuel use intensity worldwide.

    Conclusions

    Boundary setting is crucial to avoid underestimation of environmental impacts of complex means of production. The construction, maintenance and EOL stages of the life cycle of fishing vessels have here a substantial environmental impact. Recommendations can be made to decrease the environmental impact of the fleet.  相似文献   

    7.

    Purpose

    Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

    Methods

    The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

    Results and discussion

    We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

    Conclusions

    The following conclusions were drawn from this study:
    • PLA is the environmentally significant input among the three raw materials.
    • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
    • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
    The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

    8.
    Synthetic sulfuric acid is used in a wide range of applications in fine chemical industry. Despite an already performed optimization of input amounts, used sulfuric acid is still a quantitatively important waste by-product. As a result, different utilization technologies for used sulfuric acid exist:
    1. production of gypsum
    2. thermal reductive cracking
    3. thermal cracking and oxidation
    This makes an LCA study of this waste by-product quite interesting. In this paper:
  • ? the starting point for a comparative LCA of the above mentioned utilization technologies at a concrete situation is explained, in a work of Ciba-Geigy Corp.
  • ? a short summary of the comparative LCA is presented
  • ? lessons learned from performing the LCA and using it in a decision process are described.
  •   相似文献   

    9.

    Goal, Scope and Background

    More and more national and regional life cycle assessment (LCA) databases are being established satisfying the increasing demand on LCA in policy making (e.g. Integrated Product Policy, IPP) and in industry. In order to create harmonised datasets in such unified databases, a common understanding and common rules are required. This paper describes major requirements on the way towards an ideal national background LCA database in terms of co-operation, but also in terms of life cycle inventory analysis (LCI) and impact assessment (LCIA) methodology.

    Methods

    A classification of disputed methodological issues is made according to their consensus potential. In LCI, three main areas of dissent are identified where consensus seems hardly possible, namely system modelling (consequential versus attributional), allocation (including recycling) and reporting (transparency and progressiveness). In LCIA the time aspect is added to the well-known value judgements of the weighting step.

    Results and Discussions

    It is concluded that LCA methodology should rather allow for plurality than to urge harmonisation in any case. A series of questions is proposed to identify the most appropriate content of the LCA background database or the most appropriate LCI dataset. The questions help to identify the best suited approach in modelling the product system in general and multioutput and recycling processes in particular. They additionally help to clarify the position with regard to time preferences in LCIA. Intentionally, the answers to these questions are not attributed to particular goal and scope definitions, although some recommendations and clarifying explanations are provided.

    Recommendations and Perspective

    It is concluded that there is not one single ideal background database content. Value judgements are also present in LCI modelling and require pluralistic solutions; solutions possibly based on the same primary data. It is recommended to focus the methodological discussion on aspects where consensus is within reach, sensible and of added value for all parties.
      相似文献   

    10.
    11.

    Purpose

    The main objective of this paper is to analyse through life cycle assessment (LCA), the entire water services system in Iasi City (Romania): a representative city for the problems faced by the water services sector in Romania. Furthermore, the study is aimed at demonstrating the usefulness of the LCA approach as a support instrument for water resources management.

    Methods

    The life cycle inventory (LCI) of the Iasi water system was organized considering the water system components, as well as their function related to the water use life cycle: before the tap system as production phase (water abstraction, transport, treatment and distribution) and after the tap section as post-use phase (wastewater collection, treatment and discharge). The foreground data describing the LCI processes were provided directly by the company operating the Iasi water system, while the data for the background processes were sourced or selected from Ecoinvent 2.0 database. The assessment considers the quantification of environmental impacts (according to the CML 2000 baseline and Ecological Scarcity 2006 methodologies) of water supply (abstraction, treatment and distribution) and wastewater disposal (collection and treatment) relative to 1 m3 of tap water.

    Results and discussion

    For this given system, the results have pointed out that the before the tap system generates higher impacts than the after tap system, mainly due to the energetic effort needed for water supply and the fairly high water losses in the distribution system. However, the after the tap system, specifically the discharge of treated wastewater is still responsible for many of the water-related impact such as Eutrophication (when using CML) or Emissions to surface waters (when using the Ecological Scarcity method). Apart from the LCA approach, this study presents several scenarios for the improvement of the environmental performance of the water services, such as: changing between water sources, improving the distribution system and upgrading the wastewater treatment plant.

    Conclusions

    This study has demonstrated the usefulness of LCA to describe, compare and predict the environmental performance of complex water services systems (and all its components). The results have provided a reference case for the environmental profile of Iasi city water system, and have enabled the identification of its improvement alternatives. Also, this study, which represents a premiere for Romania, has opened future research directions which may include the development perspectives of the Iasi water services system, as well as improvements of LCIA methodologies to better represent the local specific water-related impacts.  相似文献   

    12.

    Purpose

    The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil.

    Methods

    The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries.

    Results and discussion

    At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts.

    Conclusions

    Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.  相似文献   

    13.

    Purpose

    Life cycle assessment is usually an assessment tool, which only considers steady-state processes, as the temporal and spatial dimensions are lost during the life cycle inventory (LCI). This approach therefore reduces the environmental relevance of certain results, as it has been underlined in the case of climate change studies. Given that the development of dynamic impact methods is based on dynamic inventory data, it seems essential to develop a general methodology to achieve a temporal LCI.

    Methods

    This study presents a method for selecting the steps, within the whole process network, for which dynamics need to be considered while others can be approximated by steady-state representation. The selection procedure is based on the sensitivity of the impacts on the variation of environmental and economic flows. Once these flows have been identified, their respective timescales are compared to the inherent timescales of the impact categories affected by the flows. The timescales of the impacts are divided into three categories (days, months, years) based on a literature review of the ReCiPe method. The introduction of a temporal dynamic depends on the relationship between the timescale of the environmental and economic flows on the one hand and that of the concerned impact on the other hand.

    Results and discussion

    This approach is illustrated by the life cycle assessment of palm methyl ester and ethanol from sugarcane. In both cases, the introduction of a temporal dynamic is limited to a small proportion of the total number of flows: 0.1 % in the sugarcane ethanol production and 0.01 % in the palm methyl ester production. Future developments of time integration in the LCI and in the life cycle impact assessment (LCIA) are also discussed in order to deal with the need of characterization functions and the recurrent problem of waiting times.

    Conclusions

    This work provides a method to select specific flows where the introduction of temporal dynamics is most relevant. It is based on sensitivity analyses and on the relationship between the timescales of the flows and the timescale of the involved impact. The time-distributed LCI generated by using this approach could then be coupled with a dynamic LCIA proposed in the literature.  相似文献   

    14.

    Introduction

    In the last years, the use of biomass for energy purposes has been seen as a promising option to reduce the use of nonrenewable energy sources and the emissions of fossil carbon. However, LCA studies have shown that the energetic use of biomass also causes impacts on climate change and, furthermore, that different environmental issues arise, such as land use and agricultural emissions. While biomass is renewable, it is not an unlimited resource. Its use, to whatever purpose, must therefore be well studied to promote the most efficient option with the least environmental impacts. The 47th LCA Discussion Forum gathered several national and international speakers who provided a broad and qualified view on the topic.

    Summary of the topics presented in DF 47

    Several aspects of energetic biomass use from a range of projects financed by the Swiss Federal Office of Energy (SFOE) were presented in this Discussion Forum. The first session focused on important aspects of the agricultural biogas production like the use of high energy crops or catch crops as well as the influence of plant size on the environmental performance of biogas. In the second session, other possibilities of biomass treatment like direct combustion, composting, and incineration with municipal waste were presented. Topic of the first afternoon session was the update and harmonization of biomass inventories and the resulting new assessment of biofuels. The short presentations investigated some further aspects of the LCA of bioenergy like the assessment of spatial variation of greenhouse gas (GHG) emissions from bioenergy production in a country, the importance of indirect land use change emissions on the overall results, the assessment of alternative technologies to direct spreading of digestate or the updates of the car operation datasets in ecoinvent.

    Conclusions

    One main outcome of this Discussion Forum is that bioenergy is not environmentally friendly per se. In many cases, energetic use of biomass allows a reduction of GHG and fossil energy use. However, there is often a tradeoff with other environmental impacts linked to agricultural production like eutrophication or ecotoxicity. Methodological challenges still exist, like the assessment of direct and indirect land use change emissions and their attribution to the bioenergy production, or the influence of heavy metal flows on the bioenergy assessment. Another challenge is the implementation of a life cycle approach in certification or legislation schemes, as shown by the example of the Renewable Energy Directive of the European Union.  相似文献   

    15.
    16.
    17.

    Purpose

    While carbon dioxide capture and storage (CCS) has been widely recognized as a useful technology for mitigating greenhouse gas emissions, it is necessary to evaluate the environmental performance of CCS from a full life cycle perspective to comprehensively understand its environmental impacts. The primary research objective is to conduct a study on life cycle assessment of the post-combustion carbon dioxide capture process based on data from SaskPower’s electricity generation station at the Boundary Dam in Saskatchewan, Canada. A secondary objective of this study is to identify the life cycle impact assessment (LCIA) methodology which is most suitable for the assessment of carbon dioxide capture technology integrated with the power generation system in the Canadian context.

    Methods

    The study takes a comparative approach by including three scenarios of carbon dioxide capture at the electricity generation station: no carbon dioxide capture (“no capture”), partial capture (“retrofit”), and fully integrated carbon dioxide capture of the entire facility (“capture”). The four LCIA methods of EDIP 97, CML2001, IMPACT2002+, and TRACI are used to convert existing inventory data into environmental impacts. The LCIA results from the four methods are compared and interpreted based on midpoint categories.

    Results and discussion

    The LCA results showed an increase in the retrofit and capture scenarios compared to the no capture scenario in the impact categories of eutrophication air, ecotoxicity water, ecotoxicity ground surface soil, eutrophication water, human health cancer ground surface soil, human health cancer water, human health noncancer ground surface soil, ozone depletion air, human health noncancer water, and ionizing radiation. The reductions were observed in the retrofit and capture scenarios in the impact categories of acidification, human health criteria air-point source, human health noncancer air, ecotoxicity air, global warming, human health cancer air, and respiratory effects.

    Conclusions

    Although the four LCIA methodologies significantly differ in terms of reference substances used for individual impact categories, all (TRACI, IMPACT2002+, CML2001, and EDIP 97) showed similar results in all impact categories.  相似文献   

    18.

    Purpose

    This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper are (1) to develop a LCI parametric model adaptable to a range of wooden pallets, (2) to test this model with a reference product (non-reversible pallet with four-way blocks) and (3) to determine numerical correlations between the environmental impacts and the most significant LCI parameters; these correlations can be used to improve the design of new wooden pallets.

    Methods

    The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent and dependent parameters was used to describe the LCI flows of a generic wooden pallet. The LCI parametric model was applied to calculate the environmental impacts of the reference product, with regard to a selection of impact categories at midpoint level (climate change, human toxicity, particulate matter formation, agricultural land occupation, fossil depletion). The model was then applied to further 11 wooden pallets belonging to the same category.

    Results and discussion

    The definition of a LCI parametric model based on 31 independent parameters and 21 dependent parameters streamlined the data collection process, as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value of environmental impact) and end-of-life (avoided impact). This result is driven by two parameters: mass of wood and average distance for transport of wood. Based on the results of the application of the LCI parametric model to the identified products, one parameter-based regression and one multiple non-linear regression allowed to define a correlation between the life cycle impact assessment (LCIA) category indicators considered and the most influencing parameters.

    Conclusions

    The definition of LCI parametric model in the wooden pallet sector can effectively be used for calculating the environmental impacts of products with different designs, as well as for obtaining a preliminary estimation of the life cycle environmental impacts of new products.  相似文献   

    19.

    Purpose

    Topsoil erosion due to land use has been characterised as one of the most damaging problems from the perspective of soil-resource depletion, changes in soil fertility and net soil productivity and damage to aquatic ecosystems. On-site environmental damage to topsoil by water erosion has begun to be considered in Life Cycle Assessment (LCA) within the context of ecosystem services. However, a framework for modelling soil erosion by water, addressing off-site deposition in surface water systems, to support life cycle inventory (LCI) modelling is still lacking. The objectives of this paper are to conduct an overview of existing methods addressing topsoil erosion issues in LCA and to develop a framework to support LCI modelling of topsoil erosion, transport and deposition in surface water systems, to establish a procedure for assessing the environmental damage from topsoil erosion on water ecosystems.

    Methods

    The main features of existing methods addressing topsoil erosion issues in LCA are analysed, particularly with respect to LCI and Life Cycle Impact Assessment methodologies. An overview of nine topsoil erosion models is performed to estimate topsoil erosion by water, soil particle transport through the landscape and its in-stream deposition. The type of erosion evaluated by each of the models, as well as their applicable spatial scale, level of input data requirements and operational complexity issues are considered. The WATEM-SEDEM model is proposed as the most adequate to perform LCI erosion analysis.

    Results and discussion

    The definition of land use type, the area of assessment, spatial location and system boundaries are the main elements discussed. Depending on the defined system boundaries and the inherent routing network of the detached soil particles to the water systems, the solving of the multifunctionality of the system assumes particular relevance. Simplifications related to the spatial variability of the input data parameters are recommended. Finally, a sensitivity analysis is recommended to evaluate the effects of the transport capacity coefficient in the LCI results.

    Conclusions

    The published LCA methods focus only on the changes of soil properties due to topsoil erosion by water. This study provides a simplified framework to perform an LCI of topsoil erosion by considering off-site deposition of eroded particles in surface water systems. The widespread use of the proposed framework would require the development of LCI erosion databases. The issues of topsoil erosion impact on aquatic biodiversity, including the development of characterisation factors, are now the subject of on-going research.  相似文献   

    20.

    Purpose

    Expanding renewable energy production is widely accepted as a promising strategy in climate change mitigation. However, even renewable energy production has some environmental impacts, some of which are not (yet) covered in life cycle impact assessment (LCIA). We aim to identify the most important cause-effect pathways related to hydropower production on biodiversity, as one of the most common renewable energy sources, and to provide recommendations for future characterization factor (CF) development.

    Methods

    We start with a comprehensive review of cause-effect chains related to hydropower production for both aquatic and terrestrial biodiversity. Next, we explore contemporary coverage of impacts on biodiversity from hydropower production in LCA. Further, we select cause-effect pathways displaying some degree of consistency with existing LCA frameworks for method development recommendations. For this, we compare and contrast different hydrologic models and discuss how existing LCIA methodologies might be modified or combined to improve the assessment of biodiversity impacts from hydropower production.

    Results and discussion

    Hydropower impacts were categorized into three overarching impact pathways: (1) freshwater habitat alteration, (2) water quality degradation, and (3) land use change. Impacts included within these pathways are flow alteration, geomorphological alteration to habitats, changes in water quality, habitat fragmentation, and land use transformation. For the majority of these impacts, no operational methodology exists currently. Furthermore, the seasonal nature of river dynamics requires a level of temporal resolution currently beyond LCIA modeling capabilities. State-of-the-art LCIA methods covering biodiversity impacts exist for land use and impacts from consumptive water use that can potentially be adapted to cases involving hydropower production, while other impact pathways need novel development.

    Conclusions

    In the short term, coverage of biodiversity impacts from hydropower could be significantly improved by adding a time step representing seasonal ecological water demands to existing LCIA methods. In the long term, LCIA should focus on ecological response curves based on multiple hydrologic indices to capture the spatiotemporal aspects of river flow, by using models based on the “ecological limits to hydrologic alteration” (ELOHA) approach. This approach is based on hydrologic alteration-ecological response curves, including site-specific environmental impact data. Though data-intensive, ELOHA represents the potential to build a global impact assessment framework covering multiple ecological indicators from local impacts. Further, we recommend LCIA methods based on degree of regulation for geomorphologic alteration and a fragmentation index based on dam density for “freshwater habitat alteration,” which our review identified as significant unquantified threats to aquatic biodiversity.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号