首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many existing methods for sustainable technical product design focus on environmental efficiency while lacking a framework for a holistic, sustainable design approach that includes combined social, technical, economic, and environmental aspects in the whole product life cycle, and that provides guidance on a technical product development level. This research proposes a framework for sustainable technical product design in the case of skis. We developed a ski under the Grown brand, benchmarked according to social, environmental, economic, and technical targets, following an initial sustainability assessment, and delivered the first environmental life cycle assessment (ELCA) and the first social life cycle assessment (SLCA) of skis. The framework applies a virtual development process as a combination of ELCA to calculate the environmental footprint as carbon equivalents of all materials and processes and a technical computer‐aided design (CAD) and computer‐aided engineering (CAE) simulation and virtual optimization using parameter studies for the nearly prototype‐free development of the benchmarked skis. The feedback loops between life cycle assessment (LCA) and virtual simulation led to the elimination of highly energy intensive materials, to the pioneering use of basalt fibers in skis, to the optimization of the use of natural materials using protective coatings from natural resins, and to the optimization of the production process. From an environmental perspective, a minimum 32% reduction in carbon equivalent emissions of materials in relation to other comparably performing skis has been achieved, as well as a pioneering step forward toward transparent communication of the environmental performance by the individual, comparable, and first published ski carbon footprint per volume unit.  相似文献   

2.

Purpose

Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win–win or trade-off situations will be identified via a life cycle assessment/life cycle costing (LCA/LCC) integrated model.

Methods

The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the life cycle inventory and the life cycle impact assessment.

Results and discussion

In both the SST and CST systems, the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win–win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its end-of-life stage.

Conclusions

The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Furthermore, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company or, in some cases, even in its procurement practices.  相似文献   

3.
Purpose

The purpose of this study is to provide an integrated method to identify the resource consumption, environmental emission, and economic cost for mechanical product manufacturing from economic and ecological dimensions and ultimately to provide theoretical and data support of energy conservation and emission reduction for mechanical product manufacturing.

Methods

The applied research methods include environmental life cycle assessment (LCA) and life cycle cost (LCC). In life cycle environmental assessment, the inventory data are referred from Chinese Life Cycle Database and midpoint approach and EDIP2003 and CML2001 models of life cycle impact assessment (LCIA) are selected. In life cycle cost assessment, three cost categories are considered. The proposed environment and cost assessment method is based on the theory of social willingness to pay for potential environmental impacts. With the WD615 Steyr engine as a case, life cycle environment and cost are analyzed and evaluated.

Results and discussion

The case study indicates that, in different life cycle phases, the trend of cost result is generally similar to the environmental impacts; the largest proportion of cost and environmental impact happened in the two phases of “material production” and “component manufacturing” and the smallest proportion in “material transport” and “product assembly.” The environmental impact category of Chinese resource depletion potential (CRDP) accounted for the largest proportion, followed by global warming potential (GWP) and photochemical ozone creation potential (POCP), whereas the impacts of eutrophication potential (EP) and acidification potential (AP) are the smallest. The life cycle “conventional cost” accounted for almost all the highest percentage in each phase (except “material transport” phase), which is more than 80% of the total cost. The “environmental cost” and “possible cost” in each phase are relatively close, and the proportion of which is far below the “conventional cost.”

Conclusions

The proposed method enhanced the conventional LCA. The case results indicate that, in a life cycle framework, the environment and cost analysis results could support each other, and focusing on the environment and cost analysis for mechanical product manufacturing will contribute to a more comprehensive eco-efficiency assessment. Further research on the life cycle can be extended to phases of “early design,” “product use,” and “final disposal.” Other LCIA models and endpoint indicators are advocated for this environmental assessment. Environmental cost can also be further investigated, and the relevant social willingness to pay for more environmental emissions is advocated to be increased.

  相似文献   

4.
Purpose

The introduction of renewable materials into automotive applications is perceived as an innovative lightweight solution. Wood-based materials are advantageous in that they have potentially lower environmental impacts as compared with other materials such as steel. However, using wood per se does not automatically ensure more sustainability. Few prospective sustainability assessment methods or studies on the use of wood-based materials in automotive applications have been carried out, although these are needed to reduce unintended, negative sustainability effects and to support sustainable oriented research and innovation. Therefore, this study was conducted to assess the potential sustainability effects and consequences of introducing a wood-based component into an automotive application.

Methods

A combination of methods was used to analyze the potential sustainability effects when introducing wood into automotive applications. This prospective life cycle sustainability analysis solely relied on secondary data. The environmental impacts were analyzed using a simplified environmental life cycle assessment on the product level. A multi-regional input-output-based assessment was conducted to model the country-specific environmental and socioeconomic consequences. The potential shift in social risks and opportunities on a national scale was analyzed by conducting a generic social life cycle assessment. Various aspects of each approach differ, with each providing a specific perspective of the system under study.

Results and discussion

The results indicate that implementing wood into automotive application can have environmental, social, and economic benefits, according to most of the indicators analyzed. Mostly due to the product weight reduction due to the use of a wood-based component, the results show that environmental impacts decrease. Some possible consequences of using wood-based materials are increased value added and increasing the number of jobs in European countries. Similarly, the social risks and opportunities are shifted from countries all over the world to European countries, which perform better than developing countries according to several indicators. However, some indicators, such as migrant acceptance or local supplier quantity, perform better in the current situation.

Conclusions

The presented case study is particularly notable, because the results clearly indicate the advantages of using wood-based materials in automotive applications, although the application of such relatively holistic and complex approaches often may lead to rather indifferent pictures. Policy makers, researchers, and companies can apply this combination of methods that rely solely on generic data to obtain both feasible and informative results. These methods also allow users to link the product level assessment with a regional and social perspective and screen critical topics to support sustainability research and innovation.

  相似文献   

5.

Purpose

With the increasing concerns related to integration of social and economic dimensions of the sustainability into life cycle assessment (LCA), traditional LCA approach has been transformed into a new concept, which is called as life cycle sustainability assessment (LCSA). This study aims to contribute the existing LCSA framework by integrating several social and economic indicators to demonstrate the usefulness of input–output modeling on quantifying sustainability impacts. Additionally, inclusion of all indirect supply chain-related impacts provides an economy-wide analysis and a macro-level LCSA. Current research also aims to identify and outline economic, social, and environmental impacts, termed as triple bottom line (TBL), of the US residential and commercial buildings encompassing building construction, operation, and disposal phases.

Methods

To achieve this goal, TBL economic input–output based hybrid LCA model is utilized for assessing building sustainability of the US residential and commercial buildings. Residential buildings include single and multi-family structures, while medical buildings, hospitals, special care buildings, office buildings, including financial buildings, multi-merchandise shopping, beverage and food establishments, warehouses, and other commercial structures are classified as commercial buildings according to the US Department of Commerce. In this analysis, 16 macro-level sustainability assessment indicators were chosen and divided into three main categories, namely environmental, social, and economic indicators.

Results and discussion

Analysis results revealed that construction phase, electricity use, and commuting played a crucial role in much of the sustainability impact categories. The electricity use was the most dominant component of the environmental impacts with more than 50 % of greenhouse gas emissions and energy consumption through all life cycle stages of the US buildings. In addition, construction phase has the largest share in income category with 60 % of the total income generated through residential building’s life cycle. Residential buildings have higher shares in all of the sustainability impact categories due to their relatively higher economic activity and different supply chain characteristics.

Conclusions

This paper is an important attempt toward integrating the TBL perspective into LCSA framework. Policymakers can benefit from such approach and quantify macro-level environmental, economic, and social impacts of their policy implications simultaneously. Another important outcome of this study is that focusing only environmental impacts may misguide decision-makers and compromise social and economic benefits while trying to reduce environmental impacts. Hence, instead of focusing on environmental impacts only, this study filled the gap about analyzing sustainability impacts of buildings from a holistic perspective.  相似文献   

6.

Background, aim and scope  

A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product’s life cycle. To create this effect, the SLCA, among other things, needs to provide valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and ‘non-implemented’ product life cycle. This difference can to some extent be found using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life cycles, meaning that by only assessing impacts related to the processes that change as a consequence of a decision, not all changes in the life situations of the stakeholders will be captured by an assessment following the consequential ELCA methodology. This article seeks to identify these impacts relating to the non-implemented product life cycle and establish indicators for their assessment.  相似文献   

7.
Purpose

With many policies in Germany steering towards a bioeconomy, there is a need for analytical tools that assess not only the environmental and economic implications but also the social implications of a transition to a bioeconomy. Wood is expected to become a major biomass resource in bioeconomy regions. Therefore, this paper develops a social life cycle assessment (sLCA) framework that can be applied specifically to a wood-based production system in one of Germany’s bioeconomy regions.

Methods

This paper reviews and analyses existing sLCA approaches, in terms of how applicable they are for assessing a wood-based production system in a German bioeconomy regional context. The analysis is structured according to the standard phases of environmental life cycle assessment (LCA). However, we use the term social effects rather than social impacts, to acknowledge the unknown cause–effect relationship between an organisation’s activities and its social impacts. We also consider the establishment of regional system boundaries, as well as the relationship between the social effects and the product being assessed. Additionally, an approach for the development and selection of social indicators and indices is outlined. Furthermore, we discuss data requirements and present an approach for a social life cycle impact assessment method.

Results and discussion

A new conceptual framework for a context-specific sLCA to assess wood-based products manufactured in a bioeconomy region was developed. It enables sLCA practitioners to identify “social hotspots” and “social opportunities” from a regional perspective. The location and characteristics of these social hotspots and opportunities can be analysed, in particular, for major production activities in a bioeconomy region in Germany. Therefore, according to this framework, the development of social indices and indicators, the collection of data and the approach used for characterising social effects need to relate to the geographical context of the product being assessed. The proposed framework can, thus, help to identify, monitor and evaluate the social sustainability of wood-based bioeconomy chains in a regional context.

Conclusions

This framework requires a high level of detail in the social inventory and impact assessment phase, in order to assess the regional foreground activities in a German wood-based bioeconomy region. It enables sLCA studies to identify which social hotspots and social opportunities occur and where they are located in the wood-based production system of a regional bioeconomy.

  相似文献   

8.
Background, Aim and Scope Sustainability is a well recognised goal which is difficult to manage due to its complexity. As part of a series of sustainability management tools, a Product Sustainability Index (PSI) is translating the sustainability aspects to the organization of vehicle product development of Ford of Europe, thus allocating ownership and responsibility to that function. PSI is limiting the scope to those key environmental, social and economic characteristics of passenger vehicles that are controllable by the product development organisation. Materials and Methods: The PSI considers environmental, economic and social aspects based on externally reviewed life cycle environmental and cost aspects (Life Cycle Assessment, Cost of ownership / Life Cycle Costing), externally certified aspects (allergy-tested interior) and related aspects as sustainable materials, safety, mobility capability and noise. After the kick-off of their product development in 2002, the new Ford S-MAX and Ford Galaxy are serving as a pilot for this tool. These products are launched in Europe in 2006. The tracking of PSI performance has been done by engineers of the Vehicle Integration department within the product development organization. The method has been translated in an easy spreadsheet tool. Engineers have been trained within one hour trainings. The application of PSI by vehicle integration followed the principle to reduce the need for any incremental time or additional data to a minimum. PSI is adopted to the existing decision-making process. End of 2005, an internal expert conducted a Life Cycle Assessment and Life Cycle Costing (LCC) study for verification purposes using commercial software. This study and the PSI have been scrutinized by an external review panel according to ISO14040 and, by taking into consideration the on-going SETAC, work in the field of LCC. Results: The results of the Life Cycle based indicators of PSI as calculated by non-experts are fully in line with those of the more detailed expert study. The difference is below 2%. The new Ford Galaxy and Ford S-MAX shows significantly improved performance regarding the life cycle air quality, use of sustainable materials, restricted substances and safety compared to the previous model Galaxy. The affordability (Life Cycle Cost of Ownership) has also been improved when looking at the same engine types. Looking at gasoline versus diesel options, the detailed study shows under what conditions the diesel options are environmentally preferable and less costly (mileage, fuel prices, etc.). Discussion: The robustness of results has been verified in various ways. Based also on Sensitivity and Monte-Carlo Analysis, case study-specific requirements have been deduced defining criteria for a significant environmental improvement between the various vehicles. Only if the differences of LCIA results between two vehicles are larger than a certain threshold are the above-mentioned results robust. Conclusions: In general terms, an approach has been implemented and externally reviewed that allows non-experts to manage key environmental, social and economic aspects in the product development, also on a vehicle level. This allows mainstream functions to take ownership of sustainability and assigns accountability to those who can really decide on changes affecting the sustainability performance. In the case of Ford S-MAX and Galaxy, indicators from all three dimensions of sustainability (environment, social and economic) have been improved compared to the old Ford Galaxy. Recommendations and Perspectives: Based on this positive experience, it is recommended to make, in large or multinational organizations, the core business functions directly responsible and accountable for managing their own part of environmental, social and economic aspects of sustainability. Staff functions should be limited to starting the process with methodological and training support and making sure that the contributions of the different main functions fit together.  相似文献   

9.

Purpose

Sustainability of a material-based product mainly depends on the materials used for the product itself or during its lifetime. A material selection decision should not only capture the functional performance required but should also consider the economical, social, and environmental impacts originated during the product life cycle. There is a need to assess social impacts of materials along the full life cycle, not only to be able to address the “social dimension” in sustainable material selection but also for potentially improving the circumstances of affected stakeholders. This paper presents the method and a case study of social life cycle assessment (S-LCA) specialized for comparative studies. Although the authors’ focus is on material selection, the proposed methodology can be used for comparative assessment of products in general.

Methods

The method is based on UNEP/SETAC “guidelines for social life-cycle assessment of products” and includes four main phases: goal and scope definition, life cycle inventory analysis, life cycle impact assessment, and life cycle interpretation. However, some special features are presented to adjust the framework for materials comparison purpose. In life cycle inventory analysis phase, a hot spot assessment is carried out using material flow analysis and stakeholder and experts’ interviews. Based on the results of that, a pairwise comparison method is proposed for life cycle impact assessment applying analytic hierarchy process. A case study was conducted to perform a comparative assessment of the social and socio-economic impacts in life cycle of concrete and steel as building materials in Iran. For hot spot analysis, generic and national level data were gathered, and for impact assessment phase, site-specific data were used.

Result and discussion

The unique feature of the proposed method compared with other works in S-LCA is its specialty to materials and products comparison. This leads to some differences in methodological issues of S-LCA that are explained in the paper in detail. The case study results assert that “steel/iron” in the north of Iran generally has the better social performance than “concrete/cement.” However, steel is associated with many negative social effects in some subcategories, e.g., freedom of association, fair salary, and occupational health in extraction phase. Against, social profile of concrete and cement industry is damaged mainly due to the negative impact of cement production on safe and healthy living condition. The case study presented in this article shows that the evaluation of social impacts is possible, even if the assessment is always affected by subjective value systems.

Conclusions

Application of the UNEP/SETAC guidelines in comparative studies can be encouraged based on the results of this paper. It enables a hotspot assessment of the social and socio-economic impacts in life cycle of alternative materials. This research showed that the development of a specialized S-LCA approach for materials and products comparison is well underway although many challenges still persist. Particularly characterization method in life cycle impact assessment phase is challenging. The findings of this case study pointed out that social impacts are primarily connected to the conduct of companies and less with processes and materials in general. These findings confirm the results of Dreyer et al. (Int J Life Cycle Assess 11(2):88–97, 2006). The proposed approach aims not only to identify the best socially sustainable alternative but also to reveal product/process improvement potentials to facilitate companies to act socially compatible. It will be interesting to apply the UNEP/SETAC approach of S-LCA to other materials and products; materials with a more complex life cycle will be a special challenge. As with any new method, getting experience on data collection and evaluation, building a data base, integrating the method in software tools, and finding ways for effective communication of results are important steps until integrating S-LCA in routine decision support.  相似文献   

10.
The private sector decision making situations which LCA addresses mustalso eventually take theeconomic consequences of alternative products or product designs into account. However, neither the internal nor external economic aspects of the decisions are within the scope of developed LCA methodology, nor are they properly addressed by existing LCA tools. This traditional separation of life cycle environmental assessment from economic analysis has limited the influence and relevance of LCA for decision-making, and left uncharacterized the important relationships and trade-offs between the economic and life cycle environmental performance of alternative product design decision scenarios. Still standard methods of LCA can and have been tightly, logically, and practically integrated with standard methods for cost accounting, life cycle cost analysis, and scenario-based economic risk modeling. The result is an ability to take both economic and environmental performance — and their tradeoff relationships — into account in product/process design decision making.  相似文献   

11.

Purpose

Used cooking oil (UCO) is a domestic waste generated as the result of cooking and frying food with vegetable oil. The purpose of this study is to compare the sustainability of three domestic UCO collection systems: through schools (SCH), door-to-door (DTD), and through urban collection centres (UCC), to determine which systems should be promoted for the collection of UCO in cities in Mediterranean countries.

Methods

The present paper uses the recent life cycle sustainability assessment (LCSA) methodology. LCSA is the combination of life cycle assessment (LCA), life cycle costing, and social life cycle assessment (S-LCA).

Results and discussion

Of the three UCO collection systems compared, the results show that UCC presents the best values for sustainability assessment, followed by DTD and finally SCH system, although there are no substantial differences between DTD and SCH. UCC has the best environmental and economic performance but not for social component. DTD and SCH present suitable values for social performance but not for the environmental and economic components.

Conclusions

The environmental component improves when the collection points are near to citizens’ homes. Depending on the vehicle used in the collection process, the management costs and efficiency can improve. UCO collection systems that carry out different kind of waste (such as UCC) are more sustainable than those that collect only one type of waste. Regarding the methodology used in this paper, the sustainability assessment proposed is suitable for use in decision making to analyse processes, products or services, even so in social assessment an approach is needed to quantify the indicators. Defining units for sustainability quantification is a difficult task because not all social indicators are quantifiable and comparable; some need to be adapted, raising the subjectivity of the analysis. Research into S-LCA and LCSA is recent; more research is needed in order to improve the methodology.  相似文献   

12.
A variety of lamps are used in animal husbandry, but data with respect to ultraviolet irradiances from these lamps, which may be important for alleviating or preventing metabolic bone disease, are generally unavailable. This paper reports irradiances from representative lamps as well as transmission and reflective properties of various materials.  相似文献   

13.
Summary Bean and marigold plants were grown to maturity under several kinds of fluorescent lamps to evaluate the effects of spectral differences on development and reproduction. Six kinds of lamps were tested including five lamps that were used in closely related experiments on tomato seedling growth (Thomas and Dunn, 1967). Evaluation was by fresh- and dry-weight yields of immature and mature pods, and of vegetative tops of plants for bean; and by flowering and fresh-and dry-weight yields for marigold.Bean plants grown under two experimental lamps, Com I and IR III produced significantly higher fresh- and dry-weight yields of both mature and total pods than under Warm-white lamps. This effect could be attributed largely to the considerable energy emitted by the experimental lamps in the red and far-red, as compared to a larger emission in the green and blue for the Warm-white lamps. The differences in the yields for immature pods and vegetative portions of the mature tops were not significant.In a comparison of the effects of three experimental lamps with those of three commercial lamps on growth response of bean plants, the yields were in general higher for the experimental lamps, except for immature pods. The yields of vegetative tops were significantly greater for the 78/22 lamp over the yields for all other lamps. The larger proportion of red and far-red light emitted by the experimental lamps is again the probable cause of the higher yields with these lamps.Two sets of experiments on growth and flowering of marigold under various experimental and commercial lamps were largely inconclusive although there was some indication of beneficial effects by the experimental lamps.In general, the results with bean agree with those for tomato (Thomas and Dunn, 1967), in that best growth was obtained with a lamp high in red light emission, a moderate amount in the far-red, and very little in the blue part of the spectrum.This research was submitted by the senior author in partial fulfillment of the requirements for the M.S. degree in Botany at the University of New Hampshire.Published with the approval of the director of the New Hampshire Agricultural Experiment Station as Scientific Contribution No. 398. This study was part of the Northeast Regional Project, NE-35, Analysis of Northeastern Climatic Variables and Their Relationships to Plant Response.  相似文献   

14.
Purpose

In the European context, energy and climate have been prioritized by policies related to retrofitting, but social concerns such as unemployment or poverty need to be tackled. Policy makers need supporting assessment methods to comprehensively address complex processes as retrofitting, and the methodology of life cycle sustainability assessment (LCSA) seems an appropriate tool. However, LCSA needs further adaptation for the intended application. The objective of this work is to define socioeconomic models that, added to environmental life cycle assessment, enable LCSA. The intended application is guiding policy making related to retrofitting from a life cycle perspective.

Methods

This study defines models to assess social and socioeconomic impacts similarly to environmental life cycle assessment. These models address social and socioeconomic concerns, relevant in housing retrofitting processes, for which a cause-effect relationship can be established. Characterization models result from the identification, combination, and adaptation of available methods, developed within various research fields. These methods analyze damages to the health of workers involved in the life cycle and to the health of the household living in the retrofitted dwelling. Impacts on human well-being and dignity are addressed by analyzing prosperity, in terms of fair employment, alleviation of fuel poverty of households, and economic growth.

Results and discussion

With the proposed LCSA methods, we have compared impacts associated to the retrofitting of a house in Brussels in two scenarios, considering a remaining life cycle of 30 years and taking into account the reference situation. Environmental damages significantly decrease in one of the scenarios, but slightly increase for households that commonly under-heat. Retrofitting prevents indoor mold and associated damages on health but implies damages on the health of workers. Fair working hours involved in the life cycle have been quantified as well as the effects on the households regarding fuel poverty. The effects on the economic growth have also been studied to provide insights for the optimization of encouraging measures.

Conclusions

This LCSA proposal consists of a set of socioeconomic characterization models coupled with selected environmental ones. The models have been defined adapted to the particular application, given the context-specific nature of some of the social concerns, indicators, and characterization factors. This LCSA proposal helps adapting policies to housing typologies, household and dwelling conditions, as well as identifying potential improvements in the life cycle.

  相似文献   

15.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

16.
In a recent letter to the editor, Jørgensen et al. questioned that life cycle costing (LCC) is relevant in life cycle-based sustainability assessment (LCSA). They hold the opinion that environmental and social aspects are sufficient. We argue that sustainability has three dimensions: environment, economy, and social aspects in accordance with the well-accepted “three pillar interpretation” of sustainability, although this is not verbally stated in the Brundtland report (WCED 1987). An analysis of the historical development of the term “sustainability” shows that the economic and social component have been present from the beginning and conclude that LCSA of product systems can be approximated by LCSA = (environmental) LCA + (environmental) LCC + S-LCA where S-LCA stands for social LCA. The “environmental” LCC is fully compatible with life cycle assessment (LCA), the internationally standardized (ISO 14040 + 14044) method for environmental product assessment. For LCC, a SETAC “Code of Practice” is now available and guidelines for S-LCA have been published by UNEP/SETAC. First examples for the use of these guidelines have been published. An important practical argument for using LCC from the customers’ point of view is that environmentally preferable products often have higher purchasing costs, whereas the LCC may be much lower (examples: energy saving light bulbs, low energy houses, and cars). Also, since LCC allows an assessment for different actor perspectives, the producers may try to keep the total costs from their perspective below those of a conventional product: otherwise, it will not succeed at the market, unless highly subsidized. Those are practical aspects whichfinally decide about success or failure of “sustainable” products. Whether or not an analysis using all three aspects is necessary will depend on the exact question. However, if real money flows are important in sustainability analysis of product systems, inclusion of LCC is advisable.  相似文献   

17.

Purpose

Currently, the bio-based plastics have been drawing considerable attention from the packaging industry as a sustainable solution for replacing petroleum-based plastics in order to reduce the accumulation of plastic waste in the environment. This work has benchmarked the environmental impact of bio-based against petroleum-based plastics for single use boxes. In this paper, the cradle to consumer gate environmental impact data of these boxes was calculated and reported as part 1. End-of-life options of both bio- and petroleum-based boxes are an important subject which will be further studied for part 2. The energy sources in this work were taken from the Thailand energy database namely: Thai electricity grid mix (TEGM), Thai coal electricity (TCE), Thai natural gas combine cycle (TNGCC), and Thai coal integrated gasification combine cycle (TIGCC).

Methods

The materials studied were polystyrene (PS) derived from petroleum, polylactic acid (PLA) derived from corn, and PLA/cassava starch blend (PLA/starch). The tray with lid (herein after called box) was processed in a plastic manufacturing in Thailand using cast sheet extrusion and then thermoforming techniques. The functional unit is specified as 10,000 units of 8.0?×?10.0?×?2.5 cm of PS, PLA, and PLA/starch boxes which weigh 447.60, 597.60, and 549.56 kg, respectively. Three impact categories; namely global warming potential including direct greenhouse gas, and indirect land use change (LUC) emissions, acidification, and photochemical ozone formation are investigated. Finally, the normalization results including and excluding LUC consideration were compared and reported.

Results and discussion

The results from this study have shown that the total environmental impact including LUC emission of bio-based boxes were different when the various energy sources were supplied throughout the life cycle production stage. It can be seen that the PS box has lower environmental impact than PLA and PLA/starch boxes when TEGM, TCE, TNGCC, and TIGCC were used as energy supplied. LUC of renewable feedstocks, such as corn and cassava, were considered as the biggest impact of absolute scores of PLA and PLA/starch boxes. These results are consistent with Piemonte and Gironi (2010).

Conclusions

PLA and PLA/starch boxes give a slightly higher environmental impact than the PS box by 1.59 and 1.09 times, respectively, when LUC was not accounted in the absolute scores and clean energy TIGCC was used throughout the life cycle.  相似文献   

18.

Purpose

In this study, a life cycle assessment of a bioplastic based diaper was performed. The product has several innovative elements, due to the implementation of eco-design principles, such as: (1) introduction of biopolymers (namely polylactic acid (PLA) and Mater-bi®), (2) relevant reduction of petrochemical plastics, and (3) minimization of energy consumptions and use of renewable energy in manufacturing. The aim of the study is to evaluate the environmental benefits gained through eco-innovation, while identifying further areas of improvement.

Methods

The bio-based diaper has been evaluated using a “cradle-to-gate” analysis. The functional unit is one diaper, assuming an average size among the different commercial options. A case study of an enterprise in Italy (WIP S.p.A) was carried out to collect as much reliable primary data as possible. In order to highlight potential areas of improvement and to compare the environmental performance of the product, a sensitivity analysis based on three different impact assessment methods (adopting ReCiPe 2008, IMPACT 2002+ and Cumulative Energy Demand (CED)) and a comparison with a standard commercial diaper were performed. Finally, three possible end-of-life scenarios including composting of WIP diaper were hypothesized and tested.

Results and discussion

Contribution analysis suggested that sourcing and production of raw materials used in WIP diaper manufacturing contributed most significantly to the potential environmental impacts. Adopting ReCiPe method, pulp, and sodium polyacrylate present the highest environmental burdens in WIP diaper system. Applying IMPACT2002+ method, PLA relative contribution to the toxicity increases, due to the generation of the electricity used in corn production and in PLA production phases. For both methods, impacts related to energy consumption of the WIP diapers’ production process look to be negligible. WIP diaper performance has room for improvement, since critical points were detected in the life cycle stages of raw materials used. However, the results of the normalization step, according to ReCiPe method, state that WIP diapers can bring environmental benefits, compared to standard ones. Moreover, if composting end-of-life scenario is included in the assessment, there is a significant improvement in WIP diaper environmental performance compared to a standard diaper.

Conclusions

Integrating eco-innovation and eco-design principles in the production of the bio-based diaper leads to a better environmental profile, compared to the standard one. Nevertheless, there are several areas of concerns to be considered in order to further improve its environmental performance. So far, the possible improvements identified from the case study are: (1) the selection of biopolymers suppliers with better production systems from an environmental point of view, (2) the reduction of distances along the supply chain, and (3) the implementation of composting procedures for the end of life. In conclusion, the introduction of biopolymers in diaper composition could lead them to be preferable compared to standard diapers, but criticisms arise, which need to be solved, to avoid the risk of burdens shifting.  相似文献   

19.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   

20.
In order to address environmental aspects during redesign, the product specification must include related targets that are reachable and challenging. To do so, this article presents a stepwise approach for combining benchmarking information and component impact, out of life cycle assessment (LCA) scaling. This approach requires allocating environmental impacts to each subsystem, which is not commonly done for some life cycle phases in LCAs, most particularly for use phases. This article includes a methodology for allocating such impacts. The underlying criterion is avoiding complex calculations, to make the method more agile. This methodology is presented in a full case study of a complex product: a knuckle boom crane. The case study results in the percentage of impact reduction needed to meet the market average or best competitors. In particular, the results show that the cylinders of the crane have a high contribution to environmental impact, not only because of their weight, but also because of the active power consumed to activate them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号