首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose

Changes in the production of Australian cotton lint are expected to have a direct environmental impact, as well as indirect impacts related to co-product substitution and induced changes in crop production. The environmental consequences of a 50% expansion or contraction in production were compared to Australian cotton production’s current environmental footprint. Both were then assessed to investigate whether current impacts are suitable for predicting the environmental impact of a change in demand for cotton lint.

Methods

A consequential life cycle assessment (LCA) model of Australian cotton lint production (cradle-to-gin gate) was developed using plausible scenarios regarding domestic regions and technologies affected by changes in supply, with both expansion (additional cotton) and contraction (less cotton) being modelled. Modelling accounted for direct impacts from cotton production and indirect impacts associated with changes to cotton production, including co-product substitution and changes to related crops at regional and global scales. Impact categories assessed included climate change, fossil energy demand, freshwater consumption, water stress, marine and freshwater eutrophication, land occupation and land-use change.

Results and discussion

For both the expansion and contraction scenarios, the changes to climate change impacts (including iLUC) and water impacts were less than would be assumed from current production as determined using attributional LCA. However, the opposite was true for all other impact categories, indicating trade-offs across the impact categories. Climate change impacts under both scenarios were relatively minor because these were largely offset by iLUC. Similarly, under the contraction scenario, water impacts were dominated by indirect impacts associated with regional crops. A sensitivity analysis showed that the results were sufficiently robust to indicate the quantum of changes that could be expected.

Conclusions

A complex array of changes in technologies, production regions and related crops were required to model the environmental impacts of a gross change in cotton production. Australian cotton lint production provides an example of legislation constraining the direct water impacts of production, leading to a contrast between impacts estimated by attributional and consequential LCA. This model demonstrated that indirect products and processes are important contributors to the environmental impacts of Australian cotton lint.

  相似文献   

2.
Purpose

Many consumers are transitioning away from single-use plastic products and turning to reusable alternatives. Oftentimes, this change is being made with the assumption that these alternatives have fewer environmental impacts; however, reusable products are frequently made from more environmentally intensive materials and have use phase impacts. This study used LCA to examine the GWP, water consumption, and primary nonrenewable energy use associated with reusable alternatives for single-use plastic kitchenware products and determined environmental payback periods.

Methods

The environmental impacts for each reusable alternative are calculated on the functional units of 1 use, 1 year (5 uses/week), and 5 years (5 uses/week). Payback periods are calculated for each reusable alternative and defined as the number of times a consumer must reuse an alternative in order for the environmental impact per use to be equivalent to the environmental impact for the single-use product. The research explored the sensitivity of the results to different consumer washing and reuse behaviors, as well as local conditions such as overall transportation distances and the carbon intensity of different electricity grids. Product types studied included straws (4 reusable, 2 single-use), sandwich storage (2 reusable, 3 single-use), coffee cups (3 reusable, 2 single-use), and forks (1 single-use, 3 reusable).

Results and discussion

Environmental impacts associated with the reusable alternatives were highly dependent on the use phase due to dishwashing, making payback period sensitive to washing frequency and method, and for GWP, carbon intensity of the energy grid (used for water heating). For single-use products, the material/manufacturing phase was the largest contributor to overall impacts. It was found that nine of the twelve reusable alternatives were able to breakeven in all three environmental indicators. The coffee cup product type was the only product type to have one reusable alternative, the ceramic mug, and have the shortest payback period for all three impact categories. Both the bamboo straw and beeswax wrap were unable to breakeven in any scenario due to high use phase impacts from manual washing.

Conclusions

The research found that reusable alternatives can payback the environmental impacts of GWP, water consumption, and energy use associated with their more resource intensive materials, but it is dependent on number of uses, consumer behavior, and for GWP, carbon intensity of the energy grid. A key takeaway is that consumer behavior and use patterns influence the ultimate environmental impact of reusable kitchenware products.

Recommendations

Some recommendations for consumers looking to reduce the overall impact of kitchenware products include the following:

  1. 1)

    Not always assuming reusable is the best option.

  2. 2)

    Extending product lifetime.

  3. 3)

    Researching which reusable option has the lowest impact.

  4. 4)

    Following best practice washing behaviors.

  5. 5)

    Not washing products after every use.

  6. 6)

    Advocating for integration of renewables into the local energy grid.

  7. 7)

    Reducing consumption of these product types (reusable or single-use).

  相似文献   

3.
Goal, Scope and Background The objective of the study was to determine the environmental effects of the resuable cup used during a major event (which took place in Barcelona, Universal Forum of Cultures, 2004), compared with a single-use cup of the same composition (polypropylene) but with different physical characteristics such as mass, shape and capacity. Methods To perform the environmental evaluations and the comparison of both types of cups, the SimaPro software developed and marketed by PRé Consultants was used. The environmental evaluation of the reusable cup was compared with that of a single-use cup using the LCA methodology [6]. The functional unit used was: ‘Serving 1000 liters of draught beverages’. The objective of the study was to find the minimum number of cycles the reusable cup has to do so that its environmental impact is smaller than that of the single-use cup. Results and Conclusions Taking into account all the hypotheses put forward, the study drew the conclusion that the minimum number of uses of the reusable cup necessary for it to have a smaller environmental impact than the single-use cup is 10. The contribution of each process taking part in the entire life cycle of the cups was also studied in detail. In the case of the single-use cup, the most important contribution to all the impact categories is due to the production of polypropylene and the fabrication of the cup, except for the heavy metals category where it is due to the management of the waste coming from the cup’s use. In the case of the reusable cup being used 10 times, the contribution to the different impact categories of the waste generated by the cup’s use is negligible compared to the contribution of the fabrication and washing processes. In addition, the washing process is the one which contributes most to the ozone layer depletion, heavy metals and carcinogens categories. As the number of uses of the reusable cup increases, the contribution to all the environmental impact categories decreases. However, this reduction is not as significant for the ozone layer depletion, heavy metals and carcinogens categories. This is due to the washing process and the fact that the electrical consumption associated with it increases with the number of washings and, consequently, of uses. Recommendations and Perspectives From the environmental point of view, the reusable cup must be used at least 10 times to have less impact than the single-use cup. This is mainly due to the higher weight of the reusable cup and, therefore, the greater amount of raw material needed for its fabrication. If the LCA methodology had been introduced during the design of the reusable cup, its weight would have been lower. This modification would have resulted in a reduction of the environmental impact associated with the use of the reusable cup and, consequently, a smaller number of uses would have been necessary to attain the same level of impact as the single-use cup.  相似文献   

4.
Purpose

Cotton yarns spun from natural fibers are widely used in the apparel industry. Most of waste cotton goods are now disposed by incineration or landfill, which brings resource and environmental challenges to the society. Using the waste cotton to spin yarns is an alternative way to forward a more sustainable future. In this research, two scenarios for the environmental impacts of yarns spun from corresponding fibers are investigated, including recycled cotton fibers and virgin cotton fibers.

Methods

The life cycle assessment (LCA) has been conducted according to the collected data from on-site investigation of typical production factories. The life cycle for the recycled cotton yarn production is divided into five stages, i.e., raw material acquisition, transportation, breaking, mixing, and spinning. The life cycle of virgin cotton yarn production is been divided into four stages, i.e., raw material acquisition, transportation, mixing, and spinning. The functional unit is 1000 kg produced yarns which are used for weaving into the fabrics. Notable impacts on climate change, fossil depletion, water depletion, and human toxicity were observed.

Results

The life cycle impact assessment (LCIA) results show that environmental impacts of recycled cotton yarns are far less than those of virgin cotton yarns, except for climate change and water depletion. The reason is that the land occupation and irrigation water have great impact on environmental impacts of cotton cultivation. In spinning, the electricity is the key factor whose environmental impacts account for the most in the virgin cotton yarn scenario, while the electricity and water consumptions are the key factors for the recycled cotton yarn scenario in the life cycle of yarn production. The sensitivity analysis indicates that improving energy efficiency can significantly reduce environmental burdens for both the two scenarios. The uncertainty distribution of water depletion, human toxicity, fossil depletion, and climate change of the two scenarios were determined with a 90% confidence interval.

Conclusions

The LCIA results reveal recycled cotton yarn is a viable alternative to relieve resource and environmental pressure. About 0.5 ha of agricultural land can be saved, 6600 kg CO2 eq can be reduced, and 2783 m3 irrigation water can be saved by using 1000 kg of the recycled cotton yarns. It can be concluded that the recycled cotton fibers can be served as a substitute for virgin cotton fibers to reduce agricultural land and avoid environmental impacts generated from the cotton planting.

  相似文献   

5.

Purpose

China is the largest producer of textile-dyeing products in the world. The production of these materials consumes high amounts of water and energy and results in the discharge of huge amounts of pollutants. This study aimed at evaluating the life-cycle environmental impacts of the textile-dyeing industry and determining the key processes for mitigating life-cycle environmental impacts efficiently and effectively, which will benefit the application of cleaner production technologies.

Methods

A life-cycle assessment was performed according to the ISO 14040 standard series. The system investigated includes the dyeing process and final disposal and the transportation of raw material, energy production, and transportation. The functional unit is 10,000 m of cotton fabric, which weighs 2,000 kg. Our study encompasses three types of data. The data regarding the production process and the major raw materials, necessary energy, and the source of the energy, as well as the emissions of some pollutants, were provided by a textile-dyeing enterprise in Jiangsu Province. The data regarding transport were generated using the GaBi version 4.3 database. Some emission factor data such as those on CO2, CH4, and N2O emissions were obtained from the literature. Resources, energy consumption, and emissions are quantified, and some of the potential environmental effects were evaluated using the CML2001 method built into the GaBi version 4.3 database.

Results and discussion

Scouring and oxygen bleaching, dyeing, stentering and setting, wastewater treatment, and incineration are the key processes in terms of global warming potential, acidification potential, photochemical ozone creation potential, and eutrophication potential. It will therefore be useful to enhance the recycling of water, control the consumption of additives and dyes, and conserve energy as much as possible. Through scenario analysis, we note that motorized shipment should be used instead of shipment by trucks, when conditions permit.

Conclusions

To promote energy conservation and the clean production of continuous pad-dyeing technology for cotton fabrics, other environmental impact categories besides the impact of the water system should be given focus. Additional work can be performed on the following: considering a consumption-based perspective of the entire process, uncertainty in data on life-cycle inventory, the evaluation methodology employed, temporal and spatial variation, the normalized toxicity of dyes and additives, and weighting methods.  相似文献   

6.
In the refrigeration and air conditioning industry, technologies to reduce environmental impacts, such as global warming, ozone-layer depletion, and discharging industrial wastes, are getting much attention nowadays. This paper reports the Life Cycle Assessment conducted to comparatively analyze two air conditioner units for residential use. One is a traditional type with HCFC22 being used for its refrigerant and the other is with HFC410A. Because the main focus of this analysis is on the comparison of the refrigerants, data of the refrigerants used are taken from the actual measurements in their production and disposal stages. As a result, the ozone layer depleting effect can be eliminated completely by using HFC410A. On the other hand, the global warming effect doesn’t get reduced extensively by using HFC410A. However, it does so by treating used refrigerants with a proper waste management. Moreover, it can be proved that using HFC410A reduces environmental impacts in all the other impact categories assessed, which are acidification, air pollution, water pollution, and energy consumption. To conclude this case study, replacing HCFC22 with HFC410A for the refrigerant is certainly one of the effective methods for reducing environmental impacts given by air conditioners.  相似文献   

7.

Purpose

Health care infection control has led to increased utilization of disposable medical devices, which has subsequently led to adverse environmental effects attributed to health care and its supply chain. In dental practice, the dental bur is a commonly used instrument that can be either reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed.

Methods

The functional unit was defined as one reusable dental bur, where the maximum instances reused was 30 (or in the case of a disposable, the equivalent functional unit would be 30 disposable dental burs). The system boundary included all cradle-to-grave aspects of both single-use and reused burs, including raw material extraction, manufacturing, packaging, distribution, reuse, and disposal. Primary data included the following: operating parameters for ultrasonic cleaning, manual cleaning, and autoclaving of the burs. The secondary data for raw material extraction and production of dental bur and packaging were obtained directly from life cycle inventory databases. Sensitivity analyses were also performed with respect to ultrasonic and autoclave loading.

Results and discussion

Findings from this research showed that when the ultrasonic and autoclave were loaded optimally, reusable burs had 40 % less of an environmental impact than burs used on a disposable basis. When the autoclave and ultrasonic were loaded to approximately two-third capacity, four environmental impact categories favored reusable burs (i.e., ozone depletion, smog, respiratory effects, exotoxicity), and four impact categories environmentally favored disposables (i.e., acidification, eutrophication, carcinogenics, and non-carcinogenics). When the autoclave and ultrasonic were loaded to approximately one-third capacity, reusable dental burs posed more negative environmental impacts in eight of nine environmental impact categories when compared to disposable burs.

Conclusions

Operational efficiency of ultrasonic and autoclave cleaning equipment should be emphasized to enhance the environmental performance of bur reuse. In fact, improper loading of the ultrasonic and autoclave can lead to greater adverse environmental impacts than if the burs were treated as disposables. The environmental and economic impacts associated with bur reuse are expected to be similar with other dental devices that are designated as disposable but are capable of being reused (e.g., scalpels, forceps).  相似文献   

8.
Life cycle assessment of printing and writing paper produced in Portugal   总被引:1,自引:0,他引:1  
Goal, Scope and Background The environmental sustainability is one of the current priorities of the Portuguese pulp and paper industry. Life Cycle Assessment (LCA) was the methodology chosen to evaluate the sustainability of the printing and writing paper production activity. This paper grade represents about 60% of the total production of paper in Portugal and its production is expected to increase in the near future. The main goal of this study was to assess the potential environmental impacts associated with the entire life cycle of the printing and writing paper produced in Portugal from Eucalyptus globulus pulp and consumed in Germany, in order to identify the processes with the largest environmental impacts. Another goal of this study was to evaluate the effect on the potential environmental impacts of changing the market where the Portuguese printing and writing paper is consumed: German market vs. Portuguese market. Methods The main stages considered in this study were: forestry, pulp production, paper production, paper distribution, and paper final disposal. Transports and production of chemicals, fuels and energy in the grid were also included in these stages. Whenever possible and feasible, average or typical data from industry were collected. The remaining data were obtained from the literature and specialised databases. A quantitative impact assessment was performed for five impact categories: global warming over 100 years, acidification, eutrophication, non-renewable resource depletion and photochemical oxidant formation. Results In the German market scenario, the paper production stage was a remarkable hot spot for air emissions (non-renewable CO2, NOx and SO2) and for non-renewable energy consumption, and, consequently, for the impact categories that consider these parameters: global warming, acidification and non-renewable resource depletion. These important environmental impacts are due to the energy requirements in the printing and writing paper production process, which are fulfilled by on-site fuel oil burning and consumption of electricity from the national grid, which is mostly based on the use of fossil fuels. The pulp production stage was identified as the largest contributor to water emissions (COD and AOX) and to eutrophication. Considering that energy consumed by the pulp production processes comes from renewable fuels, this stage was also the most contributing to renewable energy consumption. Discussion The paper distribution stage showed an important contribution to NOx emissions, which, however, did not result in a major contribution to acidification or eutrophication. The final disposal stage was the main contributor to the photochemical oxidant formation potential due to CH4 emissions from wastepaper landfilling. On the other hand, paper consumption in Portugal was environmentally more favourable than in Germany for the parameters/impact categories where the paper distribution stage has a significant contribution (non-renewable CO2, NOx, non-renewable energy consumption, acidification, eutrophication and non-renewable resource depletion) due to shorter distances needed to deliver paper to the consumers. For the remaining parameters/impact categories, the increase observed in the final disposal stage in the Portuguese market was preponderant, and resulted from the existence of significant differences in the final disposal alternatives in the analysed markets (recycling dominates in Germany, whereas landfilling dominates in Portugal). Conclusions The pulp and paper production stages were found to be of significance for almost all of the inventory parameters as well as for the impact assessment categories. The paper distribution and the final disposal stages were only of importance for some of the inventory parameters and some of the impact categories. The forestry stage played a minor role in the environmental impacts generated during the paper life cycle. The consumption of paper in Portugal led to a decrease in the environmental burdens of the paper distribution stage, but to an increase in the environmental burdens of the final disposal stage, when compared with the consumption of paper in Germany. Recommendations and Perspectives This study provides useful information that can assist the pulp and paper industry in the planning of future investments leading to an increase in its sustainability. The results of inventory analysis and impact assessment show the processes that play an important role in each impact category, which allow the industry to improve its environmental performance, making changes not only in the production process itself, but also in the treatment of flue gases and liquid effluents. Besides that concern regarding pollution prevention, other issues with relevance to the context of sustainability, such as the energy consumption, can also be dealt with.  相似文献   

9.
For the first time worldwide, it is shown that our novel nanocomposite produced from natural fibers vaccinated with glucose--by fully green nanotechnology--possesses surprising reactivity towards urea. Magic super absorbent carbamated nanocomposite cotton fabrics having remarkable distinguished properties were obtained in few minutes. It is well established that carbamates possess antibacterial effects. The produced magic nanocomposite fabrics, we discovered for the first time worldwide, find their use as woven or nonwoven hygienic pads, bandages or paper nanocomposites.  相似文献   

10.
Plants elaborate a variety of secondary metabolites such as hydrolysable tannins which are relatively abundant in fruits, vegetables and beverages in the human diet. We have studied the in vivo long-term effect consumption of tannic acid-supplemented drinking water (0.05%, w/v) on the rat adipocyte adenyl cyclase system and on lipolysis. We found that 14-day tannic acid supplementation did not significantly affect either body growth or food consumption, while fat pads weight was higher than that of the control, although the difference was not significant. On the other hand, tannic acid supplementation decreased both basal and isoproterenol-stimulated lipolysis significantly whereas cyclic AMP production as well as adenyl cyclase activity increased significantly. These results are at a first glance contradictory as cyclic AMP accumulation and lipolysis are positively correlated in rat adipocytes. They suggest at least that the tannic acid diet led to an inhibition of cyclic AMP-dependent protein kinase activity followed by a decrease in lipolysis in rat adipocytes, and to an increased activity of the type VI adenyl cyclase subunit of rat fat cells. This subunit is known to be negatively regulated under phosphorylation by cyclic AMP-dependent protein kinase. More in-depth studies are required to examine whether tannic acid could at least modify the expression of the catalytic subunit of adenyl cyclase, G-proteins and cyclic AMP-dependent protein kinase and/or alter their activities.  相似文献   

11.
This study aims to assess the environmental impacts of canned sardines in olive oil, by considering fishing, processing, and packaging, using life cycle assessment (LCA) methodology. The case study concerns a product of a canning factory based in Portugal and packed in aluminum cans. It is the first LCA of a processed seafood product made with the traditional canning method. The production of both cans and olive oil are the most important process in the considered impact categories. The production of olives contributes to the high environmental load of olive oil, related to cultivation and harvesting phases. The production of aluminum cans is the most significant process for all impact categories, except ozone depletion potential and eutrophication potential, resulting from the high energy demand and the extraction of raw materials. To compare to other sardine products consumed in Portugal, such as frozen and fresh sardines, transport to the wholesaler and store was added. The environmental cost of canned sardines is almost seven times higher per kilogram of edible product. The main action to optimize the environmental performance of canned sardines is therefore to replace the packaging and diminish the olive oil losses as much as possible. Greenhouse gas emissions are reduced by half when plastic packaging is considered rather than aluminum. Frozen and fresh sardines represent much lower environmental impacts than canned sardines. Nevertheless, when other sardine products are not possible, it becomes feasible to use sardines for human consumption, preventing them from being wasted or used suboptimally as feed.  相似文献   

12.
Primary production in lichens, as in all plants, is the result of gains and losses. Losses of carbon may be high under extreme environmental conditions. In the harsh climate of polar regions lichens use much carbon for maintenance and in their stress response. Thallus biomass is preserved through periods of darkness, extremely low temperatures and snow cover. On the other hand, lichens are photosynthetically active at temperatures below 0°C. They can make use of melted water from snow and ice and take up water vapour from snow. Physiological adaptations and environmental conditions under which growth is possible are discussed in terms of our recent results. A concept model describes the main parameters that influence carbon acquisition, growth and water relations of lichens in polar regions.  相似文献   

13.
Menstrual hygiene management (MHM) practices vary worldwide and depend on the individual’s socioeconomic status, personal preferences, local traditions and beliefs, and access to water and sanitation resources. MHM practices can be particularly unhygienic and inconvenient for girls and women in poorer settings. Little is known about whether unhygienic MHM practices increase a woman’s exposure to urogenital infections, such as bacterial vaginosis (BV) and urinary tract infection (UTI). This study aimed to determine the association of MHM practices with urogenital infections, controlling for environmental drivers. A hospital-based case-control study was conducted on 486 women at Odisha, India. Cases and controls were recruited using a syndromic approach. Vaginal swabs were collected from all the participants and tested for BV status using Amsel’s criteria. Urine samples were cultured to assess UTI status. Socioeconomic status, clinical symptoms and reproductive history, and MHM and water and sanitation practices were obtained by standardised questionnaire. A total of 486 women were recruited to the study, 228 symptomatic cases and 258 asymptomatic controls. Women who used reusable absorbent pads were more likely to have symptoms of urogenital infection (AdjOR=2.3, 95%CI1.5-3.4) or to be diagnosed with at least one urogenital infection (BV or UTI) (AdjOR=2.8, 95%CI1.7-4.5), than women using disposable pads. Increased wealth and space for personal hygiene in the household were protective for BV (AdjOR=0.5, 95%CI0.3-0.9 and AdjOR=0.6, 95%CI0.3-0.9 respectively). Lower education of the participants was the only factor associated with UTI after adjusting for all the confounders (AdjOR=3.1, 95%CI1.2-7.9). Interventions that ensure women have access to private facilities with water for MHM and that educate women about safer, low-cost MHM materials could reduce urogenital disease among women. Further studies of the effects of specific practices for managing hygienically reusable pads and studies to explore other pathogenic reproductive tract infections are needed.  相似文献   

14.
Life cycle assessment of a multi-material car component   总被引:1,自引:1,他引:0  
Background, Aims and Scope In recent years, the automotive industry has been experiencing an increasing concern with environmental requirements. A particular focus is being given to light-weighting of cars, to reducing fuel consumption and to the use of different recycling materials. Consequently, decisions on product design and development must involve economic and technological as well as environmental considerations. In adequate conditions, the LCA methodology enables one to assist an effective integration of the environmental considerations in the decision-making process [1]. In this paper, a multi-material car component which is part of the current automotive brake system, has been modified by its original manufacturer. Such a modification included the use of a new multi-material injection moulding process and the consumption of recyclable materials. The new and the current component were comparatively assessed throughout their life cycles in order to evaluate their respective environmental impacts and, thus, to verify if the new component offers a lower environmental load. The results described in this paper are part of the outcome of a broader research project involving industrial companies, university, technological centres and research institutes based in Portugal, Spain and Germany. Main Features The car component under focus has four subcomponents whose base materials consist of steel and plastic. The LCA methodology is used to evaluate two scenarios describing the new car component, on the one hand, and the reference scenario, which consists of the existing car component, on the other. The former results from the selection of new subcomponents materials, aiming to use a new production process together with a recycling strategy. Results and Discussion The inventory analysis shows a lower energy consumption in the alternative scenario (4.2 MJ) compared to the reference scenario (6.1 MJ). Most of that energy is still non-renewable, relating in particular to crude consumption in the car use phase and in the production phase (transports and plastics production). The life cycle inventory analysis indicates also that the alternative scenario has lower air emissions of CO2, CO, NOx, SOx, NM VOC and PM10, as well as lower solid wastes and water emissions of oils and BOD5. Otherwise, the water emissions of undissolved substances and COD are higher for the alternative scenario. Most of the energy consumed and the air pollutants inventoried occur as a consequence of the use phase. Otherwise, for most of the life cycle water emissions inventoried and solid wastes, the production phase is the major contributor. The impact assessment, performed with the CML method, allows one to conclude that the alternative scenario exhibits lower results in all the impact categories. Both scenarios have similar environmental profiles, being: (i) the use phase, the major contributor for the abiotic depletion, global warming, photochemical oxidation, acidification and eutrophication; and (ii) the production phase, the main contributor for ozone depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. The sensitivity analysis, with respect to the fuel consumption reduction value, the impact assessment method and the final disposal scenario, performed in this study allows one to confirm, as a main conclusion, that the alternative scenario is environmentally preferable to the reference scenario. Conclusion The results obtained through the application of the LCA methodology enable one to conclude that the alternative component has a lower environmental load than the reference component. Recommendations and Perspectives Considering that the time required for the inventory data collection is a critical issue in LCA practise, the insights provided by this particular case study are likely to be useful to product developers in the car component manufacturing industry, particularly to brake system manufacturers supporting the environmental design within the sector.  相似文献   

15.
刘梅先  杨劲松  李晓明  余美  王进 《生态学杂志》2011,22(12):3203-3210
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明: 从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450 mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

16.
Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N Icad on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N Icad has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended.A comprehensive approach that applies political and technological measures with closer cooperation is necessary to control reactive N in the environment.  相似文献   

17.

Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N load on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N load has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended. A comprehensive approach that applies political and technological measures with closer co-operation is necessary to control reactive N in the environment.

  相似文献   

18.
To focus Danish product‐oriented environmental policy, a study applying extended input‐output analysis has been performed, identifying the most important product groups from an environmental perspective. The environmental impacts are analyzed from three different perspectives—the supply perspective, the consumption perspective, and the process perspective—differing primarily in their system delimitation. The top ten environmentally most important product groups (out of 138 industry products and 98 final consumption groups) are listed for each of the three perspectives, using both total environmental impact and environmental impact intensity as ranking principles. The study covers all substances that contribute significantly to the environmental impact categories of global warming, ozone depletion, acidification, nutrient enrichment, photochemical ozone formation, ecotoxicity, human toxicity, and nature occupation. The differences in results between the three perspectives are elaborated and their policy relevance discussed. The top ten product groups account for a surprisingly large share of the total environmental impact of Danish production and consumption (up to 45%, depending upon the perspective). This implies that product‐oriented environmental policy may achieve large improvements by focusing on a rather small number of product groups. Both imported products and products produced for export in general cause more environmental impact than products produced in Denmark for the Danish market. Especially noticeable are the export of meat and ship transport. This leads to the recommendation to include specific policy measures targeting both foreign producers and foreign markets. Because of its relatively large input of labor, public consumption is found to have a much smaller environmental impact intensity than private consumption. The results confirm results of other similar studies, but are more detailed and have lower uncertainty, due to a number of improvements in data and methodology. A short presentation of the methodology is provided as background information, although this is not the main focus of this article.  相似文献   

19.
Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N load on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N load has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended. A comprehensive approach that applies political and technological measures with closer cooperation is necessary to control reactive N in the environment.  相似文献   

20.

Purpose

The objective was to assess the environmental burden of food consumption and food losses in Germany with the aim to define measures to reduce environmentally relevant food losses. To support the finding of measurements, the study provides differentiated information on life phases (agriculture, processing, retailer, and consumption), consumption places (in-house and out-of-home), and the average German food basket consisting of eight food categories.

Methods

In order to obtain information on the environmental impacts of German food consumption, the study analyzed the material flows of the food products in the German food basket starting from consumption phase and going backwards until agricultural production. The analysis includes all relevant impact categories such as GWP, freshwater and marine eutrophication, particular matter formation, and agricultural land and water use. The life stages consumers, retail, wholesale, food production, and agriculture have been taken into account. Furthermore, transports to and within Germany have been considered. Consumption and production data have been taken from the German income and consumption sample, German production and trade statistics, and studies recently carried out on food losses. In order to model German food consumption, some simplifications had to be done.

Results and discussion

Results show that German food consumption is responsible for 2.7 t of greenhouse gases per person and year. Fourteen cubic meters of blue water is used for agricultural food production per person, and 2673 m2 of agricultural land is occupied each year per German for food consumption. Between 14 and 20 % of the environmental burdens (depending on the impact category) result from food losses along the value chain. Out-of-home consumption is responsible for 8 to 28 % of the total environmental impacts (depending on the impact category). In particular, animal products cause high environmental burdens. Regarding life cycle phases, agriculture and consumption cause the highest impacts: together, they are responsible for more than 87 % of the total environmental burdens.

Conclusions

The study shows that food production and consumption as well as food losses along the value chain are of high relevance regarding Germany’s environmental impacts. In particular, animal products are responsible for high environmental burdens. Thus, with respect to reducing environmentally relevant food losses, measures should focus in particular on the reduction of food waste of animal origin. The most relevant life cycle phases to reduce environmental impacts are agricultural production and consumption in households and out-of-home.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号