首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.  相似文献   

2.
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases. The amidated tetracycline backbone is biosynthesized by the minimal polyketide synthases and an amidotransferase homologue OxyD. Biosynthesis of the key intermediate 6-methylpretetramid requires two early tailoring steps, which are cyclization of the linearly fused tetracyclic scaffold and regioselective C-methylation of the aglycon. Using a heterologous host (CH999)/vector pair, we identified the minimum set of enzymes from the oxytetracycline biosynthetic pathway that is required to afford 6-methylpretetramid in vivo. Only two cyclases (OxyK and OxyN) are necessary to completely cyclize and aromatize the amidated tetracyclic aglycon. Formation of the last ring via C-1/C-18 aldol condensation does not require a dedicated fourth-ring cyclase, in contrast to the biosynthetic mechanism of other tetracyclic aromatic polyketides, such as daunorubicin and tetracenomycin. Acetyl-derived polyketides do not undergo spontaneous fourth-ring cyclization and form only anthracene carboxylic acids as demonstrated both in vivo and in vitro. OxyF was identified to be the C-6 C-methyltransferase that regioselectively methylates pretetramid to yield 6-methylpretetramid. Reconstitution of 6-methylpretetramid in a heterologous host sets the stage for a more systematic investigation of additional tetracycline downstream tailoring enzymes and is a key step toward the engineered biosynthesis of tetracycline analogs.  相似文献   

3.
Bacterial aromatic polyketides such as tetracycline and doxorubicin are a medicinally important class of natural products produced as secondary metabolites by actinomyces bacteria. Their backbones are derived from malonyl-CoA units by polyketide synthases (PKSs). The nascent polyketide chain is synthesized by the minimal PKS, a module consisting of four dissociated enzymes. Although the biosynthesis of most aromatic polyketide backbones is initiated through decarboxylation of a malonyl building block (which results in an acetate group), some polyketides, such as the estrogen receptor antagonist R1128, are derived from nonacetate primers. Understanding the mechanism of nonacetate priming can lead to biosynthesis of novel polyketides that have improved pharmacological properties. Recent biochemical analysis has shown that nonacetate priming is the result of stepwise activity of two dissociated PKS modules with orthogonal molecular recognition features. In these PKSs, an initiation module that synthesizes a starter unit is present in addition to the minimal PKS module. Here we describe a general method for the engineered biosynthesis of regioselectively modified aromatic polyketides. When coexpressed with the R1128 initiation module, the actinorhodin minimal PKS produced novel hexaketides with propionyl and isobutyryl primer units. Analogous octaketides could be synthesized by combining the tetracenomycin minimal PKS with the R1128 initiation module. Tailoring enzymes such as ketoreductases and cyclases were able to process the unnatural polyketides efficiently. Based upon these findings, hybrid PKSs were engineered to synthesize new anthraquinone antibiotics with predictable functional group modifications. Our results demonstrate that (i) bimodular aromatic PKSs present a general mechanism for priming aromatic polyketide backbones with nonacetate precursors; (ii) the minimal PKS controls polyketide chain length by counting the number of atoms incorporated into the backbone rather than the number of elongation cycles; and (iii) in contrast, auxiliary PKS enzymes such as ketoreductases, aromatases, and cyclases recognize specific functional groups in the backbone rather than overall chain length. Among the anthracyclines engineered in this study were compounds with (i) more superior activity than R1128 against the breast cancer cell line MCF-7 and (ii) inhibitory activity against glucose-6-phosphate translocase, an attractive target for the treatment of Type II diabetes.  相似文献   

4.
Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.  相似文献   

5.
Tang Y  Lee TS  Kobayashi S  Khosla C 《Biochemistry》2003,42(21):6588-6595
Many bacterial aromatic polyketides are synthesized by type II polyketide synthases (PKSs) which minimally consist of a ketosynthase-chain length factor (KS-CLF) heterodimer, an acyl carrier protein (ACP), and a malonyl-CoA:ACP transacylase (MAT). This minimal PKS initiates polyketide biosynthesis by decarboxylation of malonyl-ACP, which is catalyzed by the KS-CLF complex and leads to incorporation of an acetate starter unit. In non-acetate-primed PKSs, such as the frenolicin (fren) PKS and the R1128 PKS, decarboxylative priming is suppressed in favor of chain initiation with alternative acyl groups. Elucidation of these unusual priming pathways could lead to the engineered biosynthesis of polyketides containing novel starter units. Unique to some non-acetate-primed PKSs is a second catalytic module comprised of a dedicated homodimeric KS, an additional ACP, and a MAT. This initiation module is responsible for starter-unit selection and catalysis of the first chain elongation step. To elucidate the protein-protein recognition features of this dissociated multimodular PKS system, we expressed and purified two priming and two elongation KSs, a set of six ACPs from diverse sources, and a MAT. In the presence of the MAT, each ACP was labeled with malonyl-CoA rapidly. In the presence of a KS-CLF and MAT, all ACPs from minimal PKSs supported polyketide synthesis at comparable rates (k(cat) between 0.17 and 0.37 min(-1)), whereas PKS activity was attenuated by at least 50-fold in the presence of an ACP from an initiation module. In contrast, the opposite specificity pattern was observed with priming KSs: while ACPs from initiation modules were good substrates, ACPs from minimal PKSs were significantly poorer substrates. Our results show that KS-CLF and KSIII recognize orthogonal sets of ACPs, and the additional ACP is indispensable for the incorporation of non-acetate primer units. Sequence alignments of the two classes of ACPs identified a tyrosine residue that is unique to priming ACPs. Site-directed mutagenesis of this amino acid in the initiation and elongation module ACPs of the R1128 PKS confirmed the importance of this residue in modulating interactions between KSs and ACPs. Our study provides new biochemical insights into unusual chain initiation mechanisms of bacterial aromatic PKSs.  相似文献   

6.
The starter unit used in the biosynthesis of daunorubicin is propionyl coenzyme A (CoA) rather than acetyl-CoA, which is used in the production of most of the bacterial aromatic polyketides studied to date. In the daunorubicin biosynthesis gene cluster of Streptomyces peucetius, directly downstream of the genes encoding the beta-ketoacyl:acyl carrier protein synthase subunits, are two genes, dpsC and dpsD, encoding proteins that are believed to function as the starter unit-specifying enzymes. Recombinant strains containing plasmids carrying dpsC and dpsD, in addition to other daunorubicin polyketide synthase (PKS) genes, incorporate the correct starter unit into polyketides made by these genes, suggesting that, contrary to earlier reports, the enzymes encoded by dpsC and dpsD play a crucial role in starter unit specification. Additionally, the results of a cell-free synthesis of 21-carbon polyketides from propionyl-CoA and malonyl-CoA that used the protein extracts of recombinant strains carrying other daunorubicin PKS genes to which purified DpsC was added suggest that this enzyme has the primary role in starter unit discrimination for daunorubicin biosynthesis.  相似文献   

7.
Microbes associated with marine sponges are considered important producers of bioactive, structurally unique polyketides. The synthesis of such secondary metabolites involves type I polyketide synthases (PKSs), which are enzymes that reach a maximum complexity degree in bacteria. The Haplosclerida sponge Arenosclera brasiliensis hosts a complex microbiota and is the source of arenosclerins, alkaloids with cytotoxic and antibacterial activity. In the present investigation, we performed high-throughput sequencing of the ketosynthase (KS) amplicon to investigate the diversity of PKS genes present in the metagenome of A. brasiliensis. Almost 4,000 ketosynthase reads were recovered, with about 90% annotated automatically as bacterial. A total of 235 bacterial KS contigs was rigorously assembled from this sequence pool and submitted to phylogenetic analysis. A great diversity of six type I PKS groups has been consistently detected in our phylogenetic reconstructions, including a novel and A. brasiliensis-exclusive group. Our study is the first to reveal the diversity of type I PKS genes in A. brasiliensis as well as the potential of its microbiome to serve as a source of new polyketides.  相似文献   

8.
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions.  相似文献   

9.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

10.
Exploiting marine actinomycete biosynthetic pathways for drug discovery   总被引:4,自引:0,他引:4  
Drug discovery relies on the generation of large numbers of structurally diverse compounds from which a potential candidate can be identified. To this end, actinomycetes have often been exploited because of their ability to biosynthesize an impressive array of novel metabolites particularly polyketides. The genetic organization of polyketide synthases (PKSs) makes them readily amenable to manipulation, and thus re-engineering artificial or hybrid PKSs to produce unnatural natural products is a reality. This review highlights two approaches we have used to generate novel polyketides by manipulating genes responsible for starter unit biosynthesis in the Streptomyces maritimus enterocin type II PKS. Our preliminary investigation into the biosynthesis of neomarinone, a rare marine actinomycete-derived meroterpenoid, is also presented.  相似文献   

11.
12.
Tang Y  Koppisch AT  Khosla C 《Biochemistry》2004,43(29):9546-9555
Type II polyketide synthases (PKSs) synthesize polyfunctional aromatic polyketides through iterative condensations of malonyl extender units. The biosynthesis of most aromatic polyketides is initiated through an acetate unit derived from decarboxylation of malonyl-acyl carrier protein (ACP). Modification of this primer unit represents a powerful method of generating novel polyketides. We have demonstrated that recombination of the initiation module from the R1128 PKS with heterologous elongation modules afforded regioselectively modified polyketides containing alternative primer units. With the exception of the role of the acyltransferase homologue ZhuC, the catalytic cycle of the initiation module has been well explored. ZhuC, along with the ketosynthase III homologue ZhuH and the ACP(p) ZhuG, is essential for the in vivo biosynthesis of aromatic polyketides derived from non-acetate primer units. Here we have studied the role of ZhuC using PKS proteins reconstituted in vitro. We show that the tetracenomycin (tcm) minimal PKS can be directly primed with non-acetate acyl groups. In the presence of approximately 10 microM hexanoyl-ZhuG or approximately 100 microM hexanoyl-CoA, the tcm minimal PKS synthesized hexanoyl-primed analogues of octaketides SEK4 and SEK4b, as well as acetate-primed decaketides SEK15 and SEK15b at comparable levels. Addition of ZhuC abolished synthesis of the acetate-primed decaketides, resulting in exclusive synthesis of the hexanoyl-primed octaketides. In the absence of alternative acyl donors, ZhuC severely retarded the activity of the tcm minimal PKS. The editing capabilities of ZhuC were directly revealed by demonstrating that ZhuC has 100 times greater specificity for acetyl- and propionyl-ACP as compared to hexanoyl- and octanoyl-ACP. Thus, by purging the acetate primer units that otherwise dominate polyketide chain initiation, ZhuC (and presumably its homologues in other PKSs such as the doxorubicin and frenolicin PKSs) allows alternative primer units to be utilized by the elongation module in vivo. The abilities of other alkylacyl primer units to prime the tcm minimal PKS were also investigated in this report.  相似文献   

13.
Novel Polyketide Synthase from Nectria haematococca   总被引:1,自引:0,他引:1       下载免费PDF全文
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: β-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

14.
Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.  相似文献   

15.
Polyketide synthase genes in insect- and nematode-associated fungi   总被引:4,自引:0,他引:4  
Production of polyketides is accomplished through complex enzymes known as polyketide synthases (PKS); these enzymes have highly conserved domains that might be useful in screens for PKSs in diverse groups of organisms. A degenerate PCR-based approach was used to amplify PKS fragments of the ketosynthase domain from genomic DNA of a group of insect- and nematode-associated fungi. Of 157 isolates (representing 73 genera and 144 species) screened, 92 isolates generated PCR products of predicted size (approximately 300 bp). The ability to detect PKS domains was a function of the number of different primer pairs employed in the screen. Cloning and sequencing revealed that 66 isolates had at least one unique PKS sequence; ten members of this set contained multiple PKS fragments, for a total of 76 unique PKS fragments. Since PKS genes appear to be widespread among fungi, a PCR-based screening system appears to be an efficient, directed means to identify organisms having the potential to produce polyketides.  相似文献   

16.
Sponge-associated bacteria are thought to produce many novel bioactive compounds, including polyketides. PCR amplification of ketosynthase domains of type I modular polyketide synthases (PKS) from the microbial community of the marine sponge Discodermia dissoluta revealed great diversity and a novel group of sponge-specific PKS ketosynthase domains. Metagenomic libraries totaling more than four gigabases of bacterial genomes associated with this sponge were screened for type I modular PKS gene clusters. More than 90% of the clones in total sponge DNA libraries represented bacterial DNA inserts, and 0.7% harbored PKS genes. The majority of the PKS hybridizing clones carried small PKS clusters of one to three modules, although some clones encoded large multimodular PKSs (more than five modules). The most abundant large modular PKS appeared to be encoded by a bacterial symbiont that made up <1% of the sponge community. Sequencing of this PKS revealed 14 modules that, if expressed and active, is predicted to produce a multimethyl-branched fatty acid reminiscent of mycobacterial lipid components. Metagenomic libraries made from fractions enriched for unicellular or filamentous bacteria differed significantly, with the latter containing numerous nonribosomal peptide synthetase (NRPS) and mixed NRPS-PKS gene clusters. The filamentous bacterial community of D. dissoluta consists mainly of Entotheonella spp., an unculturable sponge-specific taxon previously implicated in the biosynthesis of bioactive peptides.  相似文献   

17.
Regions of extremely high sequence identity are recurrent in modular polyketide synthase (PKS) genes. Such sequences are potentially detrimental to the stability of PKS expression plasmids used in the combinatorial biosynthesis of polyketide metabolites. We present two different solutions for circumventing intra-plasmid recombination within the megalomicin PKS genes in Streptomyces coelicolor. In one example, a synthetic gene was used in which the codon usage was reengineered without affecting the primary amino acid sequence. The other approach utilized a heterologous subunit complementation strategy to replace one of the problematic regions. Both methods resulted in PKS complexes capable of 6-deoxyerythronolide B analogue biosynthesis in S. coelicolor CH999, permitting reproducible scale-up to at least 5-l stirred-tank fermentation and a comparison of diketide precursor incorporation efficiencies between the erythromycin and megalomicin PKSs. Electronic Publication  相似文献   

18.
I型聚酮合酶(PKSI)的模块型分子结构组织方式非常适合于组合生物合成研究.结构域和模块通过二级组织方式构成了PKSI的催化单元,其它结构多肽则作为“支架”.在“支架”上对结构域和模块两个水平进行突变、替换、插入、缺失等基因操作形成重组PKS,可以理性设计并获得复杂多样的新活性或高活性的聚酮化合物.利用PKSI进行组合生物合成以期获得新聚酮化合物的研究迄今已有约25年,但是目前仍不能够对PKS进行完美的理性设计,快速合成目标活性的新聚酮化合物.PKS中的酰基转移酶结构域的研究在PKS的组合生物合成研究中一直发挥着重要作用.本文结合本课题组的研究基础,对AT结构域的结构、功能及在组合生物合成研究中的最新研究成果作以分析总结.  相似文献   

19.
Pestalotiollide B, an analog of dibenzodioxocinones which are inhibitors of cholesterol ester transfer proteins, is produced by Pestalotiopsis microspora NK17. To increase the production of pestalotiollide B, we attempted to eliminate competing polyketide products by deleting the genes responsible for their biosynthesis. We successfully deleted 41 out of 48 putative polyketide synthases (PKSs) in the genome of NK17. Nine of the 41 PKS deleted strains had significant increased production of pestalotiollide B (P < 0.05). For instance, deletion of pks35, led to an increase of pestalotiollide B by 887%. We inferred that these nine PKSs possibly lead to branch pathways that compete for precursors with pestalotiollide B, or that convert the product. Deletion of some other PKS genes such as pks8 led to a significant decrease of pestalotiollide B, suggesting they are responsible for its biosynthesis. Our data demonstrated that improvement of pestalotiollide B production can be achieved by eliminating competing polyketides.  相似文献   

20.
Yanyan Li  Rolf Müller 《Phytochemistry》2009,70(15-16):1850-1857
Myxobacteria are prolific producers of a wide variety of secondary metabolites. The vast majority of these compounds are complex polyketides which are biosynthesised by multimodular polyketide synthases (PKSs). In contrast, few myxobacterial metabolites isolated to date are derived from non-modular PKSs, in particular type III PKSs. This review reports our progress on the characterisation of type III PKSs in myxobacteria. We also summarize current knowledge on bacterial type III PKSs, with a special focus on the evolutionary relationship between plant and bacterial enzymes. The biosynthesis of a quinoline alkaloid in Stigmatella aurantiaca by a non-modular PKS is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号