首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron radiation is known to produce tumors in animals and cause cell transformation. We have developed a protocol to efficiently induce thymic lymphomas in RF/J mice by a single acute dose of neutron irradiation. Activated ras genes were detected in 17% (4 of 24) of the tumors analyzed. One of the tumors contained a K-ras gene activated by a point mutation in codon 146. Activating ras mutations at position 146 have not been previously detected in any known human or animal tumors. The spectrum of ras mutations detected in neutron radiation-induced thymic lymphomas was different from that seen in thymic lymphomas induced by gamma radiation in the same strain of mice. These results may have important implications for the mechanisms by which different types of radiation damage DNA.  相似文献   

2.
3.
4.
Measurement of thymine dimers in DNA by thin-layer chromatography   总被引:7,自引:0,他引:7  
An adaption of two-dimensional chromatography to thin-layer cellulose is described for the separation of thymine monomers from dimers. A number of specific advantages over paper chromatography are discussed.  相似文献   

5.
The binding of denatured DNA to the protein coded by gene 32 of phage T 4 is accompanied by a quenching of the fluorescence of the protein tryptophyl residues. Gene 32 protein also binds to UV-irradiated DNA and photosensitizes the splitting of thymine dimers. Thymine bases are regenerated by this photosensitized reaction both in double stranded and in heat denatured DNA. No photosensitized splitting of thymine dimers is observed when the complex formed by gene 32 protein with UV-irradiated DNA is dissociated at high ionic strength. These results are discussed with respect to the possible stacking interaction of tryptophyl residues of gene 32 protein with bases in single stranded DNA.  相似文献   

6.
The NarI restriction enzyme recognition site, G1G2CG3CC, has been identified as a hotspot for -2 frameshift mutations induced by N-2-acetylaminofluorene (AAF) on the basis of a forward mutation assay in plasmid pBR322 in the bacterium Escherichia coli. AAF binds primarily to the C-8 position of guanine residues, and the three guanines of the NarI site are similarly reactive. Despite this similar chemical reactivity, only binding of AAF to the G3 residue causes the -2 frameshift mutations. To study the mechanisms underlying the specificity of the mutagenic processing further, we monitored the structural changes induced by a single AAF adduct within the NarI site by means of CD spectroscopy and thermal denaturation. The NarI sequence was studied as part of the 12-mer ACCGGCGCCACA. The purification and characterization of the three isomers having a single AAF adduct covalently bound to one of the three guanines of this 12 mer are described. The analysis of the melting profiles of the duplexes formed when these three isomers are annealed with the oligonucleotide of complementary sequence shows the same destabilizing effect of the AAF adduct on the three DNA helices. It is also shown, from the CD spectra, that modification of guanine G1 or G2 by AAF does not induce major changes in the helical structure of DNA. On the other hand, modification of guanine G3 induces a change in the CD signal that suggests the formation of a local left handed structure within the 12-mer duplex. These results show the polymorphic nature of the DNA structure in the vicinity of an AAF adduct.  相似文献   

7.
Ruan HB  Zhang N  Gao X 《Genetics》2005,169(2):819-831
Manipulation of the mouse genome has emerged as an important approach for studying gene function and establishing human disease models. In this study, the mouse mutants were generated through N-ethyl-N-nitrosourea (ENU)-induced mutagenesis in C57BL/6J mice. The screening for dominant mutations yielded several mice with fur color abnormalities. One of them causes a phenotype similar to that shown by dominant-white spotting (W) allele mutants. This strain was named Wads because the homozygous mutant mice are white color, anemic, deaf, and sterile. The new mutation was mapped to 42 cM on chromosome five, where proto-oncogene c-kit resides. Sequence analysis of c-kit cDNA from Wads(m/m) revealed a unique T-to-C transition mutation that resulted in Phe-to-Ser substitution at amino acid 856 within a highly conserved tyrosine kinase domain. Compared with other c-kit mutants, Wads may present a novel loss-of-function or hypomorphic mutation. In addition to the examination of adult phenotypes in hearing loss, anemia, and mast cell deficiency, we also detected some early developmental defects during germ cell differentiation in the testis and ovary of neonatal Wads(m/m) mice. Therefore, the Wads mutant may serve as a new disease model of human piebaldism, anemia, deafness, sterility, and mast cell diseases.  相似文献   

8.
9.
At the nonpermissive temperature, premature chromosome condensation (PCC) occurs in tsBN2 cells derived from the BHK cell line, which can be converted to the Ts+ phenotype by the human RCC1 gene. To prove that the RCC1 gene is the mutant gene in tsBN2 cells, which have RCC1 mRNA and protein of the same sizes as those of BHK cells, RCC1 cDNAs were isolated from BHK and tsBN2 cells and sequenced to search for mutations. The hamster (BHK) RCC1 cDNA encodes a protein of 421 amino acids homologous to the human RCC1 protein. In a comparison of the base sequences of BHK and BN2 RCC1 cDNAs, a single base change, cytosine to thymine (serine to phenylalanine), was found in the 256th codon of BN2 RCC1 cDNA. The same transition was verified in the RCC1 genomic DNA by the polymerase chain reaction method. BHK RCC1 cDNA, but not tsBN2 RCC1 cDNA, complemented the tsBN2 mutation, although both have the same amino acid sequence except for one amino acid at the 256th codon. This amino acid change, serine to phenylalanine, was estimated to cause a profound structural change in the RCC1 protein.  相似文献   

10.
Pleiotropic effects of a null mutation in the c-fos proto-oncogene.   总被引:39,自引:0,他引:39  
The c-fos proto-oncogene has been implicated as a central regulatory component of the nuclear response to mitogens and other extracellular stimuli. Embryonic stem cells targeted at the c-fos locus have been used to generate chimeric mice that have transmitted the mutated allele through the germline. Homozygous mutants show reduced placental and fetal weights and significant loss of viability at birth. Approximately 40% of the homozygous mutants survive and grow at normal rates until severe osteopetrosis, characterized by foreshortening of the long bones, ossification of the marrow space, and absence of tooth eruption, begins to develop at approximately 11 days. Among other abnormalities, these mice show delayed or absent gametogenesis, lymphopenia, and altered behavior. Despite these defects, many live as long as their wild-type or heterozygous littermates (currently 7 months). These data indicate that c-fos is not required for the growth of most cell types but is involved in the development and function of several distinct tissues.  相似文献   

11.
Summary We have analyzed the footprints left by a single Ac transposable element during its intragenic transposition to different positions in the maize P gene. One site appears to have been visited twice by transposons, indicating that it may be an insertion hot spot. Implications of this finding for the origin of the P-vv allele are discussed. Analysis of transposon footprints may prove generally useful for establishing pedigree relationships among gene alleles.  相似文献   

12.
13.
A deletion hot spot in the Duchenne muscular dystrophy gene   总被引:28,自引:0,他引:28  
We have made a detailed study of a deletion hot spot in the distal half of the Duchenne muscular dystrophy (DMD) gene, using intragenic probe P20 (DXS269), isolated by a hybrid cell-mediated cloning procedure. P20 detects 16% deletions in patients suffering from either DMD or Becker muscular dystrophy (BMD), in sharp contrast to the adjacent intragenic markers JBir (7%) and J66 (less than 1%), mapping respectively 200-320 kb proximal and 380-500 kb distal to P20. Of the P20 deletions, 30% start within a region of 25-40 kb, the majority extending distally. P20 was confirmed to map internal to a distal intron of the DMD gene. This region was recently shown by both cDNA analysis (M. Koenig et al., 1987; Cell 50: 509-517), and field inversion electrophoresis studies (J.T. Den Dunnen et al., 1987, Nature (London) 329: 640-642) to be specifically prone to deletions. In addition, P20 detects MspI and EcoRV RFLPs, informative in 48% of the carrier females. Together, these properties make P20 useful for carrier detection, prenatal diagnosis, and the study of deletion induction in both DMD and BMD.  相似文献   

14.
15.
Many genetic disorders result from a single point mutation, and many tumor oncogenes have been found to be altered by a point mutation. The ability to inhibit selectively the expression of the mutated form of a protein without affecting its normal counterpart is central to many therapeutic strategies, since the normal protein may serve indispensable functions. Antisense oligonucleoside methylphosphonates and their psoralen derivatives directed at either normal human Ha-ras p21 or ras p21 that is mutated at a single base in codon 61 have been examined for their efficacy and specificity as inhibitors of p21 expression. Mixed cultures of cells expressing both forms of p21 were treated with the antisense oligomer complementary to the normal p21 or with the antisense oligomer complementary to the point-mutated p21. Each of the antisense oligomers specifically inhibited expression of only the form of ras p21 to which it was completely complementary and left the other form of p21 virtually unaffected.  相似文献   

16.
Fuchs RP  Fujii S 《DNA Repair》2007,6(7):1032-1041
Duplication of DNA containing damaged bases is a challenge to DNA polymerases that normally replicate with high speed, high accuracy and high processivity undamaged templates only. When a replicative DNA polymerase encounters a chemically altered base that it is unable to copy, a process called translesion synthesis (TLS) takes place during which the replicative polymerase is transiently replaced by a so-called specialized or lesion bypass polymerase. In addition to the central players that are the replicative and translesion DNA polymerases, TLS pathways involve accessory factors such as the general replication processivity factor (i.e. the beta-clamp in prokaryotes and PCNA in eukaryotes). In Escherichia coli, besides the beta-clamp, RecA plays a fundamental role as a co-factor of Pol V the major bypass polymerase in this organism. An integrated view of TLS pathways necessarily requires both genetic and biochemical studies. In this review we will attempt to summarize the insights into TLS gained over the last 25 years by studying a frameshift mutation hot spot, the NarI site. This site was initially discovered by serendipity when establishing a forward mutation spectrum induced by a chemical hepatocarcinogen, N-2-acetylaminofluorene (AAF). Indeed, this chemical carcinogen covalently binds to DNA forming adducts with guanine residues. When bound to G* in the NarI site, 5'-GGCG*CC-, AAF induces the loss of the G*pC dinucleotide at a frequency that is approximately 10(7)-fold higher than the spontaneous frequency. In vivo studies showed that the NarI mutation hot spot is neither restricted to the NarI sequence itself, nor to the carcinogen AAF. Instead, the hot spot requires a sequence containing at least two GpC repeats and any of a family of aromatic amides and nitro aromatic compounds that form a large class of human carcinogens. Genetic analysis initially revealed that the NarI frameshift pathway is SOS dependent but umuDC (i.e. Pol V) independent. More recently, DNA Pol II was identified as the enzyme responsible of this frameshift pathway. Concurrently the AAF adduct in the NarI site can be bypassed in an error-free way by Pol V. The NarI site thus offers a unique possibility to study the interplay between two specialized DNA polymerases, Pol II and Pol V, that can both extend replication intermediates formed when the replicative Pol III dissociates in the vicinity of the damage. Full reconstitution of the two pathways led us to highlight a key feature for TLS pathways, namely that it is critical the specialized DNA polymerase synthesizes, during the course of a single binding event, a patch of DNA synthesis (TLS patch) that is long enough as to "hide the lesion induced distortion" from the proofreading activity upon reloading of the replicative DNA polymerase (or any exonuclease that may get access to the primer when the specialized DNA polymerase detaches). The beta-clamp, to which all DNA polymerases bind, plays a critical role in allowing the specialized DNA polymerases to synthesize TLS patches that are long enough to resist such "external proofreading" activities.  相似文献   

17.
The formation of Thy-Thy in DNA in the presence of tyramine, tyrosine and tyrosine-containing peptides such as Lys-Tyr and Lys-Tyr-Lys was studied with monochromatic UV irradiation. The formation of Thy-Thy by UV irradiation was enhanced in the presence of these compounds. The action spectrum of the photosensitization has a peak near 280 nm corresponding to the absorption spectrum of tyrosine. The triplet quencher reduced the sensitization substantially. The sensitization in native DNA was more than six times larger than that in denatured DNA. increasing the concentration of salts suppressed the sensitization. The nature of the interaction between DNA and the sensitizer is discussed.  相似文献   

18.
Previous experiments have brought into question which amino acid sequence of the p53 oncogene product should be considered wild type and whether the normal protein is capable of cooperating with the ras oncogene to transform cells in culture. To address these questions, a series of p53 cDNA-genomic hybrid clones have been compared for the ability to cooperate with the ras oncogene in transformation assays. From these experiments, it has become clear that the amino acid alanine at position 135, in either the genomic clone or the cDNA clone, failed to produce a p53 protein that cooperated with the ras oncogene and transformed cells. Replacing alanine with valine at this position in either the genomic or the cDNA clone activated for transformation in this assay. Using restriction enzyme polymorphisms in the p53 gene, it was shown that normal mouse DNA encodes alanine at position 135 in the p53 protein. Thus, mutation is required to activate the p53 protein for cooperation with the ras oncogene. After cotransfection with the activated ras gene, the genomic p53 DNA clone always produced more transformed cell foci (1.7-fold) than similar cDNA clones and these foci were more readily cloned (3.6-fold) into permanent cell lines. A series of deletion mutants of the genomic p53 clone were employed to show that the presence of intron 4 in the p53 gene was sufficient to provide much enhanced clonability of transformed foci from culture dishes. The presence of introns in the p53 gene constructions also resulted in elevated levels of p53 protein in the p53-plus-ras-transformed cell lines. Thus, qualitative changes in the p53 protein are required to activate p53 for transformation with the oncogene ras. Quantitative improvements of transformation frequencies are associated with the higher expression levels of altered p53 protein that are provided by having one of the p53 introns in the transforming plasmid.  相似文献   

19.
UVA generates low levels of cyclobutane pyrimidine dimers (CPDs). Here we asked the question whether CPDs could fully explain the level of mutations induced by UVA. Relative mutagenicities of UVA and UVC were calculated at equal levels of CPDs in cell lines, deficient in different aspects of repair. Survival and gene mutations in the hprt locus were analyzed in a set of Chinese hamster ovary (CHO) cell lines, i.e., wild-type, Cockayne syndrome B protein-deficient (CSB), XRCC3-deficient and XRCC1-deficient adjusted to the same level of CPDs which was analyzed as strand breaks as a result of DNA cleavage by T4 endonuclease V at CPD sites. Induced mutagenicity of UVA was approximately 2 times higher than the mutagenicity of UVC in both wild-type and XRCC1-deficient cells when calculated at equal level of CPDs. Since this discrepancy could be explained by the fact that the TT-dimers, induced by UVA, might be more mutagenic than C-containing CPDs induced by UVC, we applied acetophenone, a photosensitizer previously shown to generate enhanced levels of TT-CPDs upon UVB exposure. The results suggested that the TT-CPDs were actually less mutagenic than the C-containing CPDs. We also found that the mutagenic effect of UVA was not significantly enhanced in a cell line deficient in the repair of CPDs. Altogether this suggests that neither base excision- nor nucleotide excision-repair was involved. We further challenge the possibility that the lesion responsible for the mutations induced by UVA was of a more complex nature and which possibly is repaired by homologous recombination (HR). The results indicated that UVA was more recombinogenic than UVC at equal levels of CPDs. We therefore suggest that UVA induces a complex type of lesion, which might be an obstruction during replication fork progression that requires HR repair to be further processed.  相似文献   

20.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号