首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N Emi  T Friedmann    J K Yee 《Journal of virology》1991,65(3):1202-1207
Mixed infection of a cell by vesicular stomatitis virus (VSV) and retroviruses results in the production of progeny virions bearing the genome of one virus encapsidated by the envelope proteins of the other. The mechanism for the phenomenon of pseudotype formation is not clear, although specific recognition of a viral envelope protein by the nucleocapsid of an unrelated virus is presumably involved. In this study, we used Moloney murine leukemia virus (MoMLV)-based retroviral vectors encoding the gene for neomycin phosphotransferase to investigate the interaction between the VSV G protein and the retroviral nucleocapsid during the formation of MoMLV(VSV) pseudotypes. Our results show that VSV G protein can be incorporated into the virions of retrovirus in the absence of other VSV-encoded proteins or of retroviral envelope protein. Infection of hamster cells by MoMLV(VSV) pseudotypes gave rise to neomycin phosphotransferase-resistant colonies, and addition of anti-VSV serum to the virus preparations completely abolished the infectivity of MoMLV(VSV) pseudotypes. It should be possible to use existing mutants of VSV G protein in the system described here to identify the signals that are important for the formation of MoMLV(VSV) pseudotypes.  相似文献   

2.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

3.
It has been difficult to propagate and titrate hepatitis B virus (HBV) in tissue culture. We examined whether vesicular stomatitis virus (VSV) pseudotypes bearing HBV surface (HBs) proteins infectious for human cell lines could be prepared. For this, expression plasmids for three surface proteins, L, M, and S, of HBV were made. 293T cells were then transfected with these plasmids either individually or in different combinations. 293T cells expressing HBs proteins were infected with VSVdeltaG*-G, a recombinant VSV expressing green fluorescent protein (GFP), to make VSV pseudotypes. Culture supernatants together with cells were harvested and sonicated for a short time. The infectivities of freshly harvested supernatants were determined by quantifying the number of cells expressing GFP after neutralization with anti-VSV serum and mouse monoclonal antibodies (MAbs) against HBs protein. Among 14 cell lines tested for susceptibility to HBV pseudotype samples, HepG2, JHH-7, and 293T cells were judged to be the most susceptible. Namely, the infectious units (IU) of the culture supernatant samples neutralized with anti-VSV in the absence and presence of anti-HBs S MAbs and titrated on HepG2 cells ranged from 1,000 to 4,000 IU/ml and 200 to 400 IU/ml, respectively, suggesting the presence of VSVdeltaG*(HBV) pseudotypes. This infectivity was inhibited by treatment with lactoferrin or dextran sulfate. Pretreatment of the cells with trypsin or tunicamycin inhibited plating of the pseudotype samples. The HBV pseudotypes can be used to analyze early steps of HBV infection, including the entry mechanism of HBV.  相似文献   

4.
Ecotropic and xenotropic murine leukemia viruses (MuLV's) constitute separate interference groups; within each group there is cross-interference, but between the groups there is no detectable interference. Interference is manifest against pseudotypes in which the vesicular stomatitis virus genome is contained within the coat of one of the murine leukemia viruses. The pseudotypes display the cell specificity of the leukemia viruses: pseudotypes with an ecotropic MuLV coat infect mouse cells but not rabbit or mink cells; pseudotypes with a xenotropic MuLV coat infect rabbit or mink cells well but mouse cells very poorly. Efficient pseudotype formation also occurs between the two MuLV classes, and both the interference patterns and the cell specificity of these pseudotypes are entirely determined by their envelope. Using these pseudotypes, ecotropic MuLV infection could be established in xenogeneic cells, and the resulting progeny could be scored by using a conventional XC cell assay. Also, xenotropic MuLV infection could be established in a mouse cell, showing that no absolute intracellular barrier against xenotropic virus growth exists in murine cells. The major barriers against both xenotropic and ecotropic MuLV therefore are cell surface barriers. Xenogeneic cells probably lack receptors for ecotropic MuLV, but murine cells may either lack receptors for xenotropic MuLV or have receptors that are blocked by endogenous expression of the glycoprotein of endogenous xenotropic MuLV.  相似文献   

5.
6.
Hepatitis C virus (HCV) causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma in addition to acute hepatitis. The HCV genome encodes two envelope glycoproteins, E1 and E2. To investigate the role of E1 and E2 in HCV infection, we used a recombinant vesicular stomatitis virus (VSV), VSVdeltaG*, harboring the green fluorescent protein gene instead of the VSV G envelope protein gene. It was complemented with the native form of E1 and E2, or E1 or E2 alone, to make HCV pseudotypes VSVdeltaG*(HCV), VSVdeltaG*(E1), and VSVdeltaG*(E2). Neither E1 nor E2 expression was detected on the cell surface, as reported. Unlike previous reports, infectious activities of VSVdeltaG*(HCV), VSVdeltaG*(E1) and VSVdeltaG*(E2) pseudotypes were detected under conditions where VSV was completely neutralized by anti-VSV. We could enhance the infectious titers 100-fold by sonication upon virus harvest. Bovine lactoferrin efficiently inhibited infection by VSVdeltaG*(HCV) as well as VSVdeltaG*(E2), as the interaction between E2 and lactoferrin has been thought to contribute to the inhibition of HCV infectivity. VSVdeltaG*(HCV) infected many adherent cell lines, including hepatic cell lines, but not most hematopoietic cell lines. Treatment of cells with trypsin, tunicamycin, or sulfated polysaccharides before infection reduced the infectivity of VSVdeltaG*(HCV) by about 90%, suggesting that a cell surface protein(s) with sugar chains plays an important role in HCV infection. The VSV pseudotypes developed here would be useful for analyzing the early stages of HCV infection.  相似文献   

7.
Mechanism of vesicular stomatitis virus mRNA decay   总被引:4,自引:0,他引:4  
The chemical and functional stability of the five vesicular stomatitis virus (VSV) messenger RNAs during infection of Chinese hamster ovary (CHO) cells was studied using the temperature-sensitive mutant, tsG114. By incubating infected cells at the nonpermissive temperature (39 °C), RNA synthesis was blocked and the five VSV mRNAs decayed chemically and functionally with a half-life of 1 to 1.5 h. However, all five VSV mRNAs were stable in vivo at 39 °C when protein synthesis was blocked with either cycloheximide or emetine. In contrast, when pactamycin was used to inhibit protein synthesis, the chemical and functional decay rates of the VSV mRNAs were indistinguishable from those observed in the absence of antibiotic. On the basis of the mode of action of each of the antibiotic inhibitors, these data imply that (a) ribosome movement along VSV mRNAs plays no role in their stabilities, and (b) each VSV mRNA contains a nuclease-sensitive site, at its 5′ end at or near the initiation site, which regulates its decay in vivo.  相似文献   

8.
9.
The process of maturation of vesicular stomatitis virus (VSV) results in the loss of 70% of the H-2k antigenic activity from L-cell plasma membranes. This phenomenon is also demonstrated during VSV infection of cells of the H-2d haplotype. Using the method of inhibition of immune cytolysis, VSV-infected L5178Y tissue culture cells and VSV-infected METH A fibrosarcoma cells grown in vivo show a loss of H-2d activity of 73 and 76%, respectively. Using monospecific antisera, it is seen that VSV infection results in a significant loss of antigenic activity of the gene products of both the H-2D and H-2K regions in cells of the H-2d and H-2k haplotypes. In hybrid cells expressing H-2k as well as H-2b, VSV infection results in the decrease of both H-2 antigenic activities to the same extent. VSV purified from L cells shows considerable H-2k activity, but the reaction of this virus with anti-H-2k serum does not prevent a normal subsequent infection with this virus. VSV may associate with H-2 antigen in the culture medium, but the results of mixing VSV with uninfected H-2-containing homogenates suggest that this association occurs only when the host cell and the cell homogenate share the same H-2 haplotype. Velocity sedimentation of VSV, which would remove contaminating cellular membrane fragments, does not separate H-2 activity from VSV. H-2 activity is also stably associated with VSV throughout sequential sucrose gradient centrifugation steps. It is possible that H-2 antigen is a structural component of VSV grown in murine cells.  相似文献   

10.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

11.
We compared the predicted amino acid sequences of the vesicular stomatitis virus and rabies virus glycoproteins by using a computer program which provides an optimal alignment and a statistical significance for the match. Highly significant homology between these two proteins was detected, including identical positioning of one glycosylation site. A significant homology between the predicted amino acid sequences of vesicular stomatitis virus and influenza virus matrix proteins was also found.  相似文献   

12.
13.
The complementation properties of the virus progeny released from cells mixedly infected with mutants of vesicular stomatitis virus belonging to four different complementation groups have been examined. The group IV mutant, tsW16B, was tested in combinations with three group I mutants (tsW4, tsW28, and tsG11), one group II mutant (tsG22), and one group III mutant (tsW29). Virus stocks were grown from isolated plaques appearing on the cell monolayers used to assay the mixed infection yields and tested, in a second series of mixed infections, for their ability to complement each of the two parents. It was found that the virus harvested from each one of the first series of mixed infections contained mutants of both parental types.  相似文献   

14.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

15.
16.
Vesicular stomatitis virus pseudotypes bearing envelope glycoproteins of the endogenous feline type C retrovirus, RD114, were used to assay the expression of receptors specific to RD114 on the surfaces of mouse-human hybrid cells carrying different human chromosomes. These studies show that the gene encoding the RD114 receptor is located on human chromosome 19.  相似文献   

17.
18.
Glycosylation sites of vesicular stomatitis virus glycoprotein.   总被引:16,自引:8,他引:8       下载免费PDF全文
Detailed analysis on DEAE-Sephadex of the tryptic digestion products of the glycoprotein from vesicular stomatitis virus grown in HeLa suspension cultures revealed the presence of two major and several minor sugar-labeled species. The minor tryptic glycopeptides were converted to one of the two major glycopeptide species by treatment with neuraminidase. Thus, vesicular stomatitis virus glycoprotein contains only two oligosaccharide side chains that are heterogeneous in their sialic acid content.  相似文献   

19.
Stereo images of vesicular stomatitis virus assembly.   总被引:2,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

20.
目前肿瘤治疗主要使用放疗、药物化疗,具有很大的毒、副作用,研发肿瘤靶向性药物是未来发展趋势.成人T细胞白血病(adult T cell leukemia,ATL)是一种由HTLV-1病毒引起的人恶性CD4 T淋巴细胞白血病,目前尚无有效治疗方法.溶瘤性水泡性口炎病毒(vesicular stomatitis virus,VSV)是一种肿瘤治疗病毒载体,利用HIV-1囊膜蛋白gp160对野生型VSV病毒进行假型化改造,研制了具备人CD4受体靶向性的重组VSV病毒(VSV-△G-gp160G),在对ATL病人肿瘤细胞进行的体外杀伤实验(ex vivo)中,显示出良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号