首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

2.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

3.
To investigate the events occurring at the replication forks during DNA synthesis, we studied the replication of plasmid ColE1 DNA in vivo and in vitro, using strains of Escherichia coli carrying either the dnaG3(Ts) or dnaG308(Ts) mutation. Extracts of both mutant strains supported in vitro DNA synthesis, but the amount of [3H]TMP incorporated into DNA was always less for mutant extracts than for extracts of revertant strains, which were able to grow at 42 degrees C. Sucrose gradient analysis, Southern blot analysis, and electron microscopy showed that mutant extracts synthesize a large number of early replicative intermediates containing one or two (one on each template strand) fragments at the origin of replication and some completed molecules, either open circles or covalently closed circles. The revertant extracts synthesized more completed molecules although the fraction of templates used was about the same, 0.27 for mutant extracts and 0.21 for revertant extracts. Our results show that a mutation in dnaG causes a block in the synthesis of both leading and lagging strands after initiation, which results in the accumulation of early replicative intermediates. The average size of the newly replicated region in the early replicative intermediates is 730 bases as measured from electron micrographs of early replicative intermediates. We conclude that the DnaG protein functions in lagging strand synthesis and may be necessary for the continuation of leading strand synthesis as well.  相似文献   

4.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

5.
Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.  相似文献   

6.
RNA-linked DNA molecules were obtained from E. coli dnaCts cells synchronously initiating a new round of chromosome replication. The deoxynucleotides at the transition from primer RNA to DNA were 32P-labeled, and their positions were located on the nucleotide sequence of 1.4 kb genomic region (position -906 to +493) including the oriC and its leftside flanking region. In the r-strand (the counterclockwise strand), many strong transition sites were mapped in the left half portion of the oriC and a few weak sites in the left outside region. In the 1-strand (the clockwise strand), no transition sites were found inside the oriC but many weak sites were found in the left outside region. The results support the initiation mechanism in which the first leading strand synthesis starts with the r-strand counterclockwise from the oriC that is followed by the 1-strand synthesis on the displaced template strand on the left of oriC. Primer RNA molecules attached to the strong r-strand transition sites were only a few residues in length. Properties of the transition sites were discussed.  相似文献   

7.
DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a noncoding DNA lesion in either leading strand template or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates the synthesis of a new Okazaki fragment upstream of the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and the lagging strand polymerase remain active during this period, and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase UvsW. UvsW catalyzes the regression of a stalled replication fork into a “chicken-foot” structure that has been postulated to be an intermediate in an error-free lesion bypass pathway.  相似文献   

8.
The frequencies of deletion of short sequences (mutation inserts) inserted into the chloramphenicol acetyl-transferase (CAT) gene were measured for pBR325 and pBR523, in which the orientation of the CAT gene was reversed, in Escherichia coli. Reversal of the CAT gene changes the relationship between the transcribed strand and the leading and lagging strands of the DNA replication fork in pBR325-based plasmids. Deletion of these mutation inserts may be mediated by slipped misalignment during DNA replication. Symmetrical sequences, in which the same potential DNA structural misalignment can form in both the leading and lagging strands, exhibited an approximately twofold difference in the deletion frequencies upon reversal of the CAT gene. Sequences that contained an inverted repeat that was asymmetric with respect to flanking direct repeats were designed. With asymmetric mutation inserts, different misaligned structural intermediates could form in the leading and lagging strands, depending on the orientation of the insert and/or of the CAT gene. When slippage could be stabilized by a hairpin in the lagging strand, thereby forming a three-way junction, deletion occurred by up to 50-fold more frequently than when this structure formed in the leading strand. These results support the model that slipped misalignment involving DNA secondary structure occurs preferentially in the lagging strand during DNA replication.  相似文献   

9.
20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product.  相似文献   

10.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

11.
In this paper we compare the effect of single-stranded DNA-binding proteins of bacteriophage T7 (gene 2.5 protein) and of Escherichia coli (SSB) at the T7 replication fork. The T7 gene 4 protein acts processively as helicase to promote leading strand synthesis and distributively as primase to initiate lagging strand synthesis by T7 DNA polymerase. On a nicked double-stranded template, the formation of a replication fork requires partial strand displacement so that gene 4 protein may bind to the displaced strand and unwind the helix catalytically. Both the T7 gene 2.5 protein and E. coli SSB act stoichiometrically to promote this initial strand displacement step. Once initiated, processive leading strand synthesis is not greatly stimulated by the single-stranded DNA-binding proteins. However, the T7 gene 2.5 protein, but not E. coli SSB, increases the frequency of initiation of lagging strand synthesis by greater than 10-fold. The results suggest a specific interaction of the T7 gene 2.5 protein with the T7 replication apparatus.  相似文献   

12.
Semi-conservative replication of double-stranded DNA in eukaryotic cells is an asymmetric process involving leading and lagging strand synthesis and different DNA polymerases. We report a study to analyze the effect of these asymmetries when the replication machinery encounters alkylation-induced DNA adducts. The model system is an EBV-derived shuttle vector which replicates in synchrony with the host human cells and carries as marker gene the bacterial gpt gene. A preferential distribution of N-methyl-N-nitrosourea (MNU)-induced mutations in the non transcribed DNA strand of the shuttle vector pF1-EBV was previously reported. The hypermutated strand was the leading strand. To test whether the different fidelity of DNA polymerases synthesizing the leading and the lagging strands might contribute to MNU-induced mutation distribution the mutagenesis study was repeated on the shuttle vector pTF-EBV which contains the gpt gene in the inverted orientation. We show that the base substitution error rates on an alkylated substrate are similar for the replication of the leading and lagging strands. Moreover, we present evidence that the fidelity of replication opposite O6-methylguanine adducts of both the leading and lagging strands is not affected by the 3' flanking base. The preferential targeting of mutations after replication of alkylated DNA is mainly driven by the base at the 5' side of the G residues.  相似文献   

13.
Electron microscopy (EM) was used to visualize intermediates of in vitro replication of closed circular DNA plasmids. Cell-free extracts were prepared from human cells that are proficient (IDH4, HeLa) or deficient (CTag) in bypass replication of pyrimidine dimers. The DNA substrate was either undamaged or contained a single cis, syn thymine dimer. This lesion was inserted 385 bp downstream from the center of the SV40 origin of replication and sited specifically in the template to the leading strand of the newly synthesized DNA. Products from 30 minute reactions were crosslinked with psoralen and UV, linearized with restriction enzymes and spread for EM visualization. Extended single-stranded DNA regions were detected in damaged molecules replicated by either bypass-proficient or deficient extracts. These regions could be coated with Escherichia coli single-stranded DNA binding protein. The length of duplex DNA from a unique restriction site to the single-stranded DNA region was that predicted from blockage of leading strand synthesis by the site-specific dimer. These results were confirmed by S1nuclease treatment of replication products linearized with single cutting restriction enzymes, followed by detection of the diagnostic fragments by gel electrophoresis. The absence of an extended single-stranded DNA region in replication forks that were clearly beyond the dimer was taken as evidence of bypass replication. These criteria were fulfilled in 17 % of the molecules replicated by the IDH4 extract.  相似文献   

14.
15.
The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (~0.2 to 0.6 kb) were significantly shorter than leading strand products (~2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not coordinated leading and lagging strand synthesis.  相似文献   

16.
Albicidin blocked DNA synthesis in intact cells of a PolA- EndA- Escherichia coli strain, and in permeabilized cells supplied with all necessary precursor nucleotides, indicating a direct effect on prokaryote DNA replication. Replication of phages T4 and T7 was also blocked by albicidin in albicidin-sensitive (Albs) but not in albicidin-resistant (Albr) E. coli host-cells. All stable spontaneous Albr mutants of E. coli simultaneously became resistant to phage T6. The locus determining albicidin sensitivity mapped at tsx, the structural gene for an outer-membrane protein used as a receptor by phage T6 and involved in transport through the outer membrane of nucleosides present at submicromolar extracellular concentrations. Albicidin does not closely resemble a nucleoside in structure. However, Albs E. coli strains rapidly accumulated both nucleosides and albicidin from the surrounding medium whereas the Albr mutants were defective in uptake of nucleosides and albicidin at low extracellular concentrations. An insertion mutation blocking Tsx protein production also blocked albicidin uptake and conveyed albicidin resistance. Albicidin supplied at approximately 0.1 microM blocked DNA replication within seconds in intact Albs E. coli cells, but a 100-fold higher albicidin concentration was necessary for a rapid inhibition of DNA replication in permeabilized cells. We conclude that albicidin is effective at very low concentrations against E. coli because it is rapidly concentrated within cells by illicit transport through the tsx-encoded outer-membrane channel normally involved in nucleoside uptake. Albicidin resistance results from loss of the mechanism of albicidin transport through the outer membrane.  相似文献   

17.
By using an in vitro system for R1 plasmid replication dependent on a plasmid-encoded repA protein and host dnaA protein, 5' ends of the nascent leading strand were located at positions 1986-1992, some 380 base pair downstream of oriR. Analyses of early replication intermediates generated in vitro in the presence of dideoxy TTP also indicated that replication initiates about 400 base pair downstream of oriR and proceeds unidirectionally. When a 418-base single-stranded DNA from position 1778 to 2195, derived from the leading strand template, was cloned onto an M13 vector, the chimeric single-stranded phage could be replicated in vitro with only single-stranded DNA binding protein, primase (dnaG gene product), and DNA polymerase III holoenzyme. Furthermore, the priming occurred at a site identical to leading strand initiation. These results strongly suggest that the leading strand synthesis is primed by primase alone. The lagging strand synthesis is specifically terminated at position 1515 or 1516 within oriR, preventing further leftward fork movement. Based on these results, a scheme of R1 plasmid replication is presented.  相似文献   

18.
To better understand aberrant simian virus 40 DNA replication intermediates produced by exposure of infected cells to the anticancer drug camptothecin, we compared them to forms produced by S1 nuclease digestion of normal viral replication intermediates. All of the major forms were identical in both cases. Thus the aberrant viral replicating forms in camptothecin-treated cells result from DNA strand breaks at replication forks. Linear simian virus 40 forms which are produced by camptothecin exposure during viral replication were identified as detached DNA replication bubbles. This indicates that double strand DNA breaks caused by camptothecin-topoisomerase I complexes occur at both leading and lagging strand replication forks in vivo.  相似文献   

19.
Trypanosoma brucei''s mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei''s six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.  相似文献   

20.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号