首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the investigation of the intracellular sites of insulin degradation, it might be important whether receptor-bound insulin could be a substrate for insulin-degrading enzyme (IDE). Insulin receptor and IDE were purified from rat liver using a wheat germ agglutinin column and monoclonal anti-IDE antibody affinity column, respectively. [125I]insulin-receptor complex was incubated with various amounts of IDE at 0 degree C in the presence of disuccinimidyl suberate and analyzed by reduced 7.5% SDS-PAGE and autoradiography. With increasing amounts of IDE, the radioactivity of 135 kd band (insulin receptor alpha-subunit) decreased, whereas that of 110 kd band (IDE) appeared then gradually increased, suggesting that IDE could bind to receptor-bound insulin. During incubation of insulin-receptor complex with IDE at 37 degrees C, about half of the [125I]insulin was dissociated from the complex. However, the time course of [125I]insulin degradation in this incubation was essentially identical to that of free [125I]insulin degradation. Cross-linked, non-dissociable receptor-bound [125I]insulin was also degraded by IDE. Rebinding studies to IM-9 cells showed that the receptor binding activity of dissociated [125I]insulin from insulin-receptor complex incubated with IDE was significantly (p less than 0.001) decreased as compared with that without the enzyme. These results, therefore, show that IDE could recognize and degrade receptor-bound insulin, and suggest that IDE may be involved in insulin metabolism during receptor-mediated endocytosis through the degradation of receptor-bound insulin in early neutral vesicles before their internal pH is acidified.  相似文献   

2.
The effect of steroid hormones on insulin binding and the amount of insulin-receptor mRNA was examined in IM-9 lymphocytes. Cortisol and cortexolone, but not oestrogen, increased both the binding of insulin and the amount of insulin-receptor mRNA in a time- and dose-dependent manner. Cortisol was most potent, and induced a 2-fold increase in insulin binding and a 4-fold increase in mRNA. The elevation in binding was due to an increased number of insulin receptors at the cell surface. The increase in mRNA involved all four of the insulin-receptor mRNAs and could not be inhibited by cycloheximide. The cortisol-induced increase in mRNA was associated with a 3-4-fold increase in the synthesis of pro-receptor. The relative potency of the three steroids indicated that these effects were mediated by an interaction with the glucocorticoid receptor. The results of this study suggest that cortisol can increase the number of insulin receptors at the cell surface by increasing the amounts of insulin-receptor mRNA and the synthesis de novo of insulin receptors.  相似文献   

3.
The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblast insulin receptors. These cells bind and internalize insulin normally. Biochemical assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 degrees C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 degrees C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The total number of complexes reached a maximum by 5 min and decreased rapidly thereafter with a t 1/2 of approximately 10 min. There was a distinct delay in the appearance, rate of rise, and peak of intracellular free and degraded insulin. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored, based on the ability of dissociated insulin to rebind to receptor upon neutralization of acidic intracellular vesicles with monensin. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.  相似文献   

4.
The status of insulin-receptor interactions in a variety of insulin-resistant states is reviewed. Utilizing large adipocytes from adult rats and small fat cells from young rats, we have conducted a series of in vitro experiments in an attempt to determine the cellular alteration(s) responsible for the insulin resistance associated with obesity. Stimulation of glucose oxidation by insulin is reduced in large cells. Studies using a mimicker of insulin action, spermine, as well as measurements of 125I-insulin binding to large and small cells indicate that receptor number and affinity are not responsible for hormone resistance. Furthermore, when rapid and direct measurements of sugar uptake were made, insulin stimulation was virtually identical in both cell types. These findings indicate that large adipocytes have an efficient insulin-responsive D-glucose transport system and suggest that the apparent hormone resistance may be due to alterations in intracellular glucose metabolism. It has been proposed that altered insulin-receptor interaction underlies the insulin resistance of human obesity. We have investigated this particular aspect of insulin action by 125I-insulin binding studies. Similar numbers of insulin receptors per cell and affinity for insulin were observed in adipocytes obtained from normal weight subjects and morbidly obese patients. Thus, the initial step in insulin action is unaltered in human obesity.  相似文献   

5.
Addition of insulin to wheat-germ-lectin-purified glycoproteins derived from rat hepatocytes or rabbit brown adipose tissue results in the increased phosphorylation of a Mr-110 000 protein. This naturally occurring glycoprotein appears as a monomeric structure and is not part of the insulin receptor itself, since it is not immunoprecipitated by highly specific antibodies to insulin receptor. Phosphorylation of the Mr-110 000 protein and autophosphorylation of the receptor beta-subunit (Mr 95 000) are stimulated by insulin in a remarkably similar dose-dependent fasion, with half-maximal stimulation at 1 nM-insulin. Further, kinetic studies suggest that the phosphorylation of the Mr-110 000 protein occurs after autophosphorylation of the insulin-receptor kinase. In conclusion, the present identification of an endogenous substrate for the insulin-receptor kinase could suggest that some, if not all, effects of insulin may be mediated through activation of this kinase.  相似文献   

6.
The purified human placental insulin-receptor beta-subunit autophosphorylating activity was found to be inhibited, in a time- and concentration-dependent manner, by the specific thiol-alkylating agents N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid). The insulin-receptor kinase was observed to be more sensitive to inhibition by N-ethylmaleimide in the presence [IC50 (concn, giving 50% inhibition) = 25 +/- 3 microM] than in the absence (IC50 = 73 +/- 6 microM) of insulin. Similarly, inhibition by 5,5'-dithiobis-(2-nitrobenzoic acid) occurred with IC50 = 30 +/- 6 microM in the presence and 155 +/- 35 microM in the absence of insulin. Examination of the exogenous-substrate protein kinase activity demonstrated that the differential sensitivity to N-ethylmaleimide was due to direct inhibition of protein kinase activity, as opposed to blockade of the phospho-acceptor properties of the insulin receptor. In contrast, iodoacetamide had essentially no effect on the insulin-receptor beta-subunit autophosphorylating activity and was able to protect partially against the N-ethylmaleimide inhibition in both the presence and the absence of insulin. Consistent with these findings, none of the thiol-specific agents were able to alter significantly insulin binding at concentrations which maximally inhibited the beta-subunit autophosphorylation. Further, in the presence of insulin, the insulin-receptor kinase activity was also observed to be more sensitive to oxidation by H2O2 and FeCl3/ascorbate compared with insulin receptors in the absence of insulin. These results indicate that there is a critical thiol group(s) necessary for the beta-subunit autophosphorylating activity of the insulin-receptor kinase and that in the presence of insulin is more susceptible to exogenously added thiol and oxidizing agents.  相似文献   

7.
The effect of oxytetracycline on insulin resistance in obese mice   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Chronic oxytetracycline treatment was found to improve the insulin resistance of the obese-hyperglycaemic mouse. 2. The improved response to insulin was accompanied by decreased concentrations of circulating insulin and glucose, by a decrease in the lipid content of the liver and by an increase in the insulin-receptor sites of the liver and adipose tissue. 3. The increase in insulin-receptor sites preceded the fall in blood glucose. 4. Comparable studies done on food-restricted animals indicated that although chronic food restriction corrected the hyperinsulinaemia it did not restore the insulin-receptor sites or the hyperglycaemia.  相似文献   

8.
The dynamics of the interaction of the insulin receptor with a substrate-trapping mutant of protein-tyrosine phosphatase 1B (PTP1B) were monitored in living human embryonic kidney cells using bioluminescence resonance energy transfer (BRET). Insulin dose-dependently stimulates this interaction, which could be followed in real time for more than 30 minutes. The effect of insulin on the BRET signal could be detected at early time-points (30 seconds), suggesting that in intact cells the tyrosine-kinase activity of the insulin receptor is tightly controlled by PTP1B. Interestingly, the basal (insulin-independent) interaction of the insulin receptor with PTP1B was much weaker with a soluble form of the tyrosine-phosphatase than with the endoplasmic reticulum (ER)-targeted form. Inhibition of insulin-receptor processing using tunicamycin suggests that the basal interaction occurs during insulin-receptor biosynthesis in the ER. Therefore, localization of PTP1B in this compartment might be important for the regulation of insulin receptors during their biosynthesis.  相似文献   

9.
Glucocorticoids will enhance the growth of cultured human skin fibroblasts in serum-containing medium. In serum-free cultures hydrocortisone (5 X 10(-6) M) will enhance insulin stimulation of sugar transport and DNA synthesis (as measured by thymidine incorporation into trichloroacetic acid-precipitable material). The optimal concentration for the glucocorticoid effect on DNA synthesis was 5 X 10(-8) M for dexamethasone and 5 X 10(-7) M for hydrocortisone. In dexamethasone-treated cells, concentrations of insulin as low as 250 microU/ml (10 ng/ml) were effective in stimulating DNA synthesis. Further, hydrocortisone and dexamethasone (both at 5 X 10(-6) M) exhibited potentiating effects on insulin-stimulated sugar transport. These effects appeared to be mediated via inhibitory actions on the hexose transport system with the preservation of a functional insulin-receptor interaction resulting in insulin stimulation of deoxy-D-glucose transport at physiological insulin concentrations, 250 microU/ml (10 ng/ml). Hydrocortisone also enhanced specific [125I]insulin binding in these cells. The data indicate that the mechanism(s) of glucocorticoid enhancement of two actions of insulin may be different.  相似文献   

10.
Leprechaunism is an autosomal recessive syndrome of severe insulin resistance and is characterized by intrauterine growth restriction, acanthosis nigricans, hirsutism, and loss of glucose homeostasis. Here we report a new female patient of Hispanic and Afro-American descent whose fibroblasts and lymphoblasts had markedly impaired insulin binding (less than 10% of that in controls). Insulin binding to lymphoblasts established from both unrelated parents was partially impaired. Insulin-like growth factor-I (IGF-I) and epidermal growth factor (EGF) binding to the patient's fibroblasts were within the normal range. Insulin stimulation of receptor autophosphorylation and kinase activity was markedly reduced in the patient's fibroblasts. The patient's fibroblasts had both a reduced number of immunoreactive insulin receptor (6% of those in controls) and concomitantly reduced amounts of insulin-receptor mRNA, suggesting that both mutations inherited by the patient reduced insulin-receptor mRNA. Sequencing of the insulin-receptor gene and cDNA indicated that the patient was heterozygous for a paternally derived mutation at bp 1333, converting Arg372 to a STOP codon. This nonsense mutation was observed in the insulin-receptor gene, but not in cDNA, indicating reduced amounts of mRNA for the allele containing this mutation. The coding sequence of the maternally inherited insulin-receptor allele was normal. Both the marked reduction in insulin-receptor mRNA in the compound heterozygous fibroblasts of the proband and the partially reduced insulin binding in maternal cells suggest that the maternally derived mutation is located in an insulin-receptor gene sequence that controls cellular mRNA content.  相似文献   

11.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions.  相似文献   

12.
We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps.  相似文献   

13.
Isolated muscle cells from adult rat heart were used to investigate the effect of microtubule modifiers on the insulin-receptor interaction in mammalian heart muscle. Preincubation of freshly isolated cells with increasing concentrations of vinblastine resulted in a dose-related inhibition of specific binding of 125I-labelled insulin, whereas colchicine did not affect the binding reaction. Analysis of equilibrium binding data demonstrated a reduction of receptor number after treatment of cells with vinblastine. The dissociable fraction of 125I-labelled insulin specifically bound at equilibrium was significantly reduced by preincubation with vinblastine. The results suggest involvement of microtubules in the insulin-receptor interaction in cardiac muscle.  相似文献   

14.
The recent crystallographic structure of the insulin receptor (IR) extracellular domain has brought us closer to ending several decades of speculation regarding the stoichiometry and mechanism of insulin-receptor binding and negative cooperativity. It supports a bivalent crosslinking model whereby two sites on the insulin molecule alternately crosslink two partial-binding sites on each insulin-receptor half. Ligand-induced or -stabilized receptor dimerization or oligomerization is a general feature of receptor tyrosine kinases (RTKs), in addition to cytokine receptors, but the kinetic consequences of this mechanism have been less well studied in other RTKs than in the IR. Surprisingly, recent studies indicate that constitutive dimerization and negative cooperativity are also ubiquitous properties of G-protein-coupled receptors (GPCRs), which show allosteric mechanisms similar to those described for the IR.  相似文献   

15.
In intact rat hepatocytes insulin stimulates the phosphorylation of the beta-subunit of its receptor exclusively on serine residues, which are also phosphorylated in the absence of insulin. In contrast, in partially purified insulin receptors derived from these same cells and in highly purified insulin receptors obtained by immunoprecipitation with anti-receptor antibodies, the receptor beta-subunit is phosphorylated solely on tyrosine residues. For both cell-free systems, insulin's stimulatory action on receptor phosphorylation leads to an increase in phosphotyrosine. When partially purified receptors were used to phosphorylate two exogenous substrates, casein and histone, insulin was found to stimulate the phosphorylation of both tyrosine and serine. However, the basal and insulin-stimulated kinase activity of immunoprecipitated receptors was only tyrosine-specific. From these observations we propose that the insulin-receptor complex consists of two different insulin-stimulatable kinase activities: (1) a tyrosine-specific kinase, which is a constituent of the insulin-receptor structure and whose activation is likely to be the first post-binding event in insulin action; and (2) a serine-specific kinase, which is closely associated with the receptor in the cell membrane.  相似文献   

16.
The effect of incubation with insulin on insulin-receptor internalization by erythrocyte ghosts was investigated. The number of surface insulin receptors decreased by 30-40% after incubation of ghosts with insulin. Total insulin-receptor binding to solubilized ghosts was the same in insulin-incubated and control ghosts, whereas insulin binding to an internal vesicular fraction was substantially increased in insulin-incubated ghosts. Our findings suggest that erythrocyte-ghost insulin receptors are internalized to a vesicular compartment in response to incubation with insulin.  相似文献   

17.
Leprechaunism: an inherited defect in a high-affinity insulin receptor.   总被引:8,自引:2,他引:6  
We examined in vivo oral glucose tolerance tests and in vitro insulin binding, cellular response, and insulin-receptor structure of fibroblasts cultured from the skin of a patient with leprechaun syndrome and her parents. In response to oral glucose, the proband exhibited marked hyperinsulinism (maximum plasma insulin = 4,120 microU/ml), the father had mild hyperinsulinism (maximum plasma insulin = 240 microU/ml), and the mother was normal. [125I]insulin binding to monolayers of intact fibroblasts demonstrated complex kinetics that were interpreted using a two-receptor model. Normal high-affinity binding had an apparent KA of 1.6 X 10(10)/molar with 1,100 sites/cell. The proposed low-affinity state receptor had an apparent KA of 6.8 X 10(7)/molar with approximately 30,000 sites/cell. Insulin binding to the proband's cells had no high-affinity binding but had normal low-affinity binding. Cells from the mother had 60%, and cells from the father, 2%, of control insulin binding to the high-affinity receptor, but normal, low-affinity site binding. Two different, insulin-stimulable responses were evaluated under experimental conditions identical with those used for insulin binding. Insulin stimulation of 2-methylaminoisobutyric acid uptake occurred with half-maximal responses between 25 and 50 ng/ml insulin. This response was similar in cells from controls and the patient. By contrast, the uptake and phosphorylation of 2-deoxy-D-glucose was stimulated at half-maximal insulin concentrations between 1 and 10 ng/ml in control cells but was not significantly increased in the proband's cells until 1,000 ng/ml concentrations of insulin were attained. In affinity crosslinking experiments, [125I]insulin was covalently bound to insulin receptors of fibroblast membranes using disuccinimidylsuberate. [125I]insulin specifically bound to 125,000 dalton monomeric subunits and 250,000 dalton dimers. In control cells, the ratio of monomer to dimer was approximately one, but significantly fewer dimers were crosslinked in insulin receptors from the patient's cells. We conclude that in this family two different recessive mutations impair high-affinity insulin-receptor binding and that the proband with leprechaunism is a compound heterozygote for these mutations. The two mutations produced structural changes in the receptor that altered subunit interactions and loss of high-affinity binding and cellular responsivity.  相似文献   

18.
Hydrogen bonding involving peptide bonds of the backbone of the insulin molecule may play an important role in insulin-receptor interaction. Our previous work suggested that the A2-A8 helical segment of the hormone molecule participates in this interaction. To investigate the possible involvement of peptide bonds of this segment in insulin-receptor interaction the [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin ([MeIle2-A]- and [MeVal3-A]insulins) were synthesized. The circular dichroic spectra of the analogues were obtained and their properties were examined in several biological assays. The circular dichroic spectra suggested that the analogues remained monomeric at concentrations at which insulin is predominantly dimeric, and that their A2-A8 helical segments are distorted. The in vitro biological activity and the receptor binding affinity of these analogues were compared with that of natural insulin. Both analogues are weak full agonists. [MeIle2-A]insulin displayed a potency of 5.4 +/- 0.3% in stimulating lipogenesis and 4.6 +/- 2.3% in receptor binding affinity in rat fat cells and rat liver plasma membranes respectively. [MeVal3-A]insulin displayed a potency of 2.1 +/- 0.2% in lipogenesis and 1.0 +/- 0.3% in receptor binding assays. In radioimmunoassays [MeIle2-A]- and [MeVal3-A]insulins exhibited potencies of 13% and 11% respectively relative to the natural hormone. The substantially decreased biological activity and receptor binding affinity of these analogues may be attributed partly to the change of conformation and partly to the loss of hydrogen bonding capacity of the A2-A8 segment brought about by N-methylation of the A1-A2 or A2-A3 peptide bonds.  相似文献   

19.
Insulin receptor was co-purified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. By using this 'in vitro' system, the mechanism of activation of the serine kinase by insulin was explored. Peptide 1150, histone, poly(Glu-Tyr), eliminating Mn2+ (Mg2+ only), treatment at 37 degrees C (1 h), N-ethylmaleimide, phosphate, beta-glycerol phosphate and anti-phosphotyrosine antibody all inhibited insulin-receptor tyrosine kinase activity and the ability of insulin to stimulate phosphorylation of the insulin receptor on serine. Additionally, direct stimulation of the receptor tyrosine kinase by vanadate increased serine phosphorylation of the insulin receptor. Insulin-stimulated tyrosine phosphorylation preceded insulin-stimulated serine phosphorylation of the insulin receptor. The activity of the insulin-sensitive receptor serine kinase was not augmented by cyclic AMP, cyclic GMP, Ca2+, Ca2+ + calmodulin, Ca2+ + phosphatidylserine + diolein or spermine, or inhibited appreciably by heparin. Additionally, the serine kinase phosphorylated casein or phosvitin poorly and was active with Mn2+. This indicates that it is distinct from Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, cyclic AMP- and cyclic GMP-dependent protein kinases, casein kinases I and II and insulin-activated ribosomal S6 kinase. Taken together, these data indicate that a novel species of serine kinase catalyses the insulin-dependent phosphorylation of the insulin receptor and that activation of this receptor serine kinase by insulin requires an active insulin-receptor tyrosine kinase.  相似文献   

20.
The three-dimensional structure of human insulin-like growth factor II was determined at high resolution in aqueous solution by NMR and simulated annealing based calculations. The structure is quite similar to those of insulin and insulin-like growth factor I, which consists of an alpha-helix followed by a turn and a strand in the B-region and two antiparallel alpha-helices in the A-region. However, the regions of Ala1-Glu6, Pro31-Arg40 and Thr62-Glu67 are not well-defined for lack of distance constraints, possibly due to motional flexibility. Based on the resultant structure and the results of structure-activity relationships, we propose the interaction sites of insulin-like growth factor II with the type 2 insulin-like growth factor receptor and the insulin-like growth factor binding proteins. These sites partially overlap with each other at the opposite side of the putative binding surface to the insulin receptor and the type 1 insulin-like growth factor receptor. We also discuss the interaction modes of insulin-like growth factor II with the insulin receptor and the type 1 insulin-like growth factor receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号