首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP2, or addition of physiological levels of Ca2+. Such structural changes may well modulate vesicle fusion in vivo.  相似文献   

2.
3.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

4.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

5.
Synaptic vesicles are clustered at the presynaptic terminal where they fuse and recycle in response to stimulation. Vesicles appear to be sorted into pools, but we do not yet understand how physiologically defined pools relate to morphological pools. The advent of dynamic imaging approaches has led to an appreciation of the regulation of vesicle mobility. Newly endocytosed vesicles are highly mobile but appear to become transiently trapped as they re-enter the recycling pool. Recent experiments indicate that endocytosis might have a constant rate, but limited capacity. How endocytosis is linked to exocytosis remains unclear, although calcium emerges as an important player.  相似文献   

6.
An oscillatory increase in pancreatic beta cell cytoplasmic free Ca2+ concentration, [Ca2+]i, is a key feature in glucose-induced insulin release. The role of the voltage-gated Ca2+ channel beta3 subunit in the molecular regulation of these [Ca2+]i oscillations has now been clarified by using beta3 subunit-deficient beta cells. beta3 knockout mice showed a more efficient glucose homeostasis compared to wild-type mice due to increased glucose-stimulated insulin secretion. This resulted from an increased glucose-induced [Ca2+]i oscillation frequency in beta cells lacking the beta3 subunit, an effect accounted for by enhanced formation of inositol 1,4,5-trisphosphate (InsP3) and increased Ca2+ mobilization from intracellular stores. Hence, the beta3 subunit negatively modulated InsP3-induced Ca2+ release, which is not paralleled by any effect on the voltage-gated L type Ca2+ channel. Since the increase in insulin release was manifested only at high glucose concentrations, blocking the beta3 subunit in the beta cell may constitute the basis for a novel diabetes therapy.  相似文献   

7.
The synaptic SNARE complex is a highly stable four-helix bundle that links the vesicle and plasma membranes and plays an essential role in the Ca(2+)-triggered release of neurotransmitters and hormones. An understanding has yet to be achieved of how this complex assembles and undergoes structural transitions during exocytosis. To investigate this question, we have mutated residues within the hydrophobic core of the SNARE complex along the entire length of all four chains and examined the consequences using amperometry to measure fusion pore opening and dilation. Mutations throughout the SNARE complex reduced two distinct rate processes before fusion pore opening to different degrees. These results suggest that two distinct, fully assembled conformations of the SNARE complex drive transitions leading to open fusion pores. In contrast, a smaller number of mutations that were scattered through the SNARE complex but were somewhat concentrated in the membrane-distal half stabilized open fusion pores. These results suggest that a structural transition within a partially disassembled complex drives the dilation of open fusion pores. The dependence of these three rate processes on position within the SNARE complex does not support vectorial SNARE complex zipping during exocytosis.  相似文献   

8.
Spontaneous, short-lived, focal cytosolic Ca2+ transients were found for the first time and characterized in freshly dissociated chromaffin cells from mouse. Produced by release of Ca2+ from intracellular stores and mediated by type 2 and perhaps type 3 ryanodine receptors (RyRs), these transients are quantitatively similar in magnitude and duration to Ca2+ syntillas in terminals of hypothalamic neurons, suggesting that Ca2+ syntillas are found in a variety of excitable, exocytotic cells. However, unlike hypothalamic nerve terminals, chromaffin cells do not display syntilla activation by depolarization of the plasma membrane, nor do they have type 1 RyRs. It is widely thought that focal Ca2+ transients cause "spontaneous" exocytosis, although there is no direct evidence for this view. Hence, we monitored catecholamine release amperometrically while simultaneously imaging Ca2+ syntillas, the first such simultaneous measurements. Syntillas failed to produce exocytotic events; and, conversely, spontaneous exocytotic events were not preceded by syntillas. Therefore, we suggest that a spontaneous syntilla, at least in chromaffin cells, releases Ca2+ into a cytosolic microdomain distinct from the microdomains containing docked, primed vesicles. Ryanodine (100 microM) reduced the frequency of Ca2+ syntillas by an order of magnitude but did not alter the frequency of spontaneous amperometric events, suggesting that syntillas are not involved in steps preparatory to spontaneous exocytosis. Surprisingly, ryanodine also increased the total charge of individual amperometric events by 27%, indicating that intracellular Ca2+ stores can regulate quantal size.  相似文献   

9.
Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release.  相似文献   

10.
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca2+-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca2+ overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain–binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca2+ channel activity at the plasma membrane, resulting in the inhibition of Ca2+-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.  相似文献   

11.
Synaptophysin is a synaptic vesicle (SV) protein of unknown function. Here we show that a repeated sequence in the cytoplasmic tail of synaptophysin mediates the formation of a protein complex containing the GTPase dynamin. The formation of this complex requires a high Ca(2+) concentration, suggesting that it occurs preferentially at the sites of SV exocytosis. Coimmunoprecipitation of a dynamin-synaptophysin complex from brain extracts is promoted by dissociation of vesicle-associated membrane protein 2 from synaptophysin. This finding suggests that dynamin only associates with synaptophysin in vivo after vesicle-associated membrane protein 2 (VAMP2) enters the SNARE complex. GTP binding releases dynamin from synaptophysin, possibly serving to regulate dynamin selfassembly during endocytosis. Our results suggest that synaptophysin plays a role in SV recycling by recruiting dynamin to the vesicle membrane.  相似文献   

12.
13.
Wadel K  Neher E  Sakaba T 《Neuron》2007,53(4):563-575
In order to release neurotransmitter synchronously in response to a presynaptic action potential, synaptic vesicles must be both release competent and located close to presynaptic Ca2+ channels. It has not been shown, however, which of the two is the more decisive factor. We tested this issue at the calyx of Held synapse by combining Ca2+ uncaging and electrophysiological measurements of postsynaptic responses. After depletion of the synaptic vesicles that are responsible for synchronous release during action potentials, uniform elevation of intracellular Ca2+ by Ca2+ uncaging could still elicit rapid release. The Ca2+ sensitivity of remaining vesicles was reduced no more than 2-fold, which is insufficient to explain the slow-down of the kinetics of release (10-fold) observed during a depolarizing pulse. We conclude that recruitment of synaptic vesicles to sites where Ca2+ channels cluster, rather than fusion competence, is a limiting step for rapid neurotransmitter release in response to presynaptic action potentials.  相似文献   

14.
Chen Y  Deng L  Maeno-Hikichi Y  Lai M  Chang S  Chen G  Zhang JF 《Cell》2003,115(1):37-48
A tight balance between synaptic vesicle exocytosis and endocytosis is fundamental to maintaining synaptic structure and function. Calcium influx through voltage-gated Ca2+ channels is crucial in regulating synaptic vesicle exocytosis. However, much less is known about how Ca2+ regulates vesicle endocytosis or how the endocytic machinery becomes enriched at the nerve terminal. We report here a direct interaction between voltage-gated Ca2+ channels and endophilin, a key regulator of clathrin-mediated synaptic vesicle endocytosis. Formation of the endophlin-Ca2+ channel complex is Ca2+ dependent. The primary Ca2+ binding domain resides within endophilin and regulates both endophilin-Ca2+ channel and endophilin-dynamin complexes. Introduction into hippocampal neurons of a dominant-negative endophilin construct, which constitutively binds to Ca2+ channels, significantly reduces endocytosis-mediated uptake of FM 4-64 dye without abolishing exocytosis. These results suggest an important role for Ca2+ channels in coordinating synaptic vesicle recycling by directly coupling to both exocytotic and endocytic machineries.  相似文献   

15.
Ca2+-dependent activator protein for secretion (CAPS) is a cytosolic protein essential for the Ca2+-dependent fusion of dense-core vesicles (DCVs) with the plasma membrane and the regulated secretion of a subset of neurotransmitters. The mechanism by which CAPS functions in exocytosis and the means by which it associates with target membranes are unknown. We identified two domains in CAPS with distinct membrane-binding properties that were each essential for CAPS activity in regulated exocytosis. The first of these, a centrally located pleckstrin homology domain, exhibited three properties: charge-based binding to acidic phospholipids, binding to plasma membrane but not DCV membrane, and stereoselective binding to phosphatidylinositol 4,5-bisphosphate. Mutagenesis studies revealed that the former two properties but not the latter were essential for CAPS function. The central pleckstrin homology domain may mediate transient CAPS interactions with the plasma membrane during Ca2+-triggered exocytosis. The second membrane association domain comprising distal C-terminal sequences mediated CAPS targeting to and association with neuroendocrine DCVs. The CAPS C-terminal domain was also essential for optimal activity in regulated exocytosis. The presence of two membrane association domains with distinct binding specificities may enable CAPS to bind both target membranes to facilitate DCV-plasma membrane fusion.  相似文献   

16.
We tested the long-standing hypothesis that synaptotagmin 1 is the Ca2+ sensor for fast neurosecretion by analyzing the intracellular Ca2+ dependence of large dense-core vesicle exocytosis in a mouse strain carrying a mutated synaptotagmin C2A domain. The mutation (R233Q) causes a twofold increase in the KD of Ca2+-dependent phospholipid binding to the double C2A-C2B domain of synaptotagmin. Using photolysis of caged calcium and capacitance measurements we found that secretion from mutant cells had lower secretory rates, longer secretory delays, and a higher intracellular Ca2+-threshold for secretion due to a twofold increase in the apparent KD of the Ca2+ sensor for fast exocytosis. Single amperometric fusion events were unchanged. We conclude that Ca2+-dependent phospholipid binding to synaptotagmin 1 mirrors the intracellular Ca2+ dependence of exocytosis.  相似文献   

17.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

18.
A number of mutations have been linked to diseases for which the underlying mechanisms are poorly understood. An example is Timothy Syndrome (TS), a multisystem disorder that includes severe cardiac arrhythmias. Here we employ theoretical simulations to examine the effects of a TS mutation in the L-type Ca(2+) channel on cardiac dynamics over multiple scales, from a gene mutation to protein, cell, tissue, and finally the ECG, to connect a defective Ca(2+) channel to arrhythmia susceptibility. Our results indicate that 1) the TS mutation disrupts the rate-dependent dynamics in a single cardiac cell and promotes the development of alternans; 2) in coupled tissue, concordant alternans is observed at slower heart rates in mutant tissue than in normal tissue and, once initiated, rapidly degenerates into discordant alternans and conduction block; and 3) the ECG computed from mutant-simulated tissue exhibits prolonged QT intervals at physiological rates and with small increases in pacing rate, T-wave alternans, and alternating T-wave inversion. At the cellular level, enhanced Ca(2+) influx due to the TS mutation causes electrical instabilities. In tissue, the interplay between faulty Ca(2+) influx and steep action potential duration restitution causes arrhythmogenic discordant alternans. The prolongation of action potentials causes spatial dispersion of the Na(+) channel excitability, leading to inhomogeneous conduction velocity and large action potential spatial gradients. Our model simulations are consistent with the ECG patterns from TS patients, which suggest that the TS mutation is sufficient to cause the clinical phenotype and allows for the revelation of the complex interactions of currents underlying it.  相似文献   

19.
ATP, cAMP, and Ca(2+) are the major signals in the regulation of insulin granule exocytosis in pancreatic beta cells. The sensors and regulators of these signals have been characterized individually. The ATP-sensitive K(+) channel, acting as the ATP sensor, couples cell metabolism to membrane potential. cAMP-GEFII, acting as a cAMP sensor, mediates cAMP-dependent, protein kinase A-independent exocytosis, which requires interaction with both Piccolo as a Ca(2+) sensor and Rim2 as a Rab3 effector. l-type voltage-dependent Ca(2+) channels (VDCCs) regulate Ca(2+) influx. In the present study, we demonstrate interactions of these molecules. Sulfonylurea receptor 1, a subunit of ATP-sensitive K(+) channels, interacts specifically with cAMP-GEFII through nucleotide-binding fold 1, and the interaction is decreased by a high concentration of cAMP. Localization of cAMP-GEFII overlaps with that of Rim2 in plasma membrane of insulin-secreting MIN6 cells. Localization of Rab3 co-incides with that of Rim2. Rim2 mutant lacking the Rab3 binding region, when overexpressed in MIN6 cells, is localized exclusively in cytoplasm, and impairs cAMP-dependent exocytosis in MIN6 cells. In addition, Rim2 and Piccolo bind directly to the alpha(1)1.2-subunit of VDCC. These results indicate that ATP sensor, cAMP sensor, Ca(2+) sensor, and VDCC interact with each other, which further suggests that ATP, cAMP, and Ca(2+) signals in insulin granule exocytosis are integrated in a specialized domain of pancreatic beta cells to facilitate stimulus-secretion coupling.  相似文献   

20.
Yao J  Gaffaney JD  Kwon SE  Chapman ER 《Cell》2011,147(3):666-677
Synaptic transmission involves a fast synchronous phase and a slower asynchronous phase of neurotransmitter release that are regulated by distinct Ca(2+) sensors. Though the Ca(2+) sensor for rapid exocytosis, synaptotagmin I, has been studied in depth, the sensor for asynchronous release remains unknown. In a screen for neuronal Ca(2+) sensors that respond to changes in [Ca(2+)] with markedly slower kinetics than synaptotagmin I, we observed that Doc2--another Ca(2+), SNARE, and lipid-binding protein--operates on timescales consistent with asynchronous release. Moreover, up- and downregulation of Doc2 expression levels in hippocampal neurons increased or decreased, respectively, the slow phase of synaptic transmission. Synchronous release, when triggered by single action potentials, was unaffected by manipulation of Doc2 but was enhanced during repetitive stimulation in Doc2 knockdown neurons, potentially due to greater vesicle availability. In summary, we propose that Doc2 is a Ca(2+) sensor that is kinetically tuned to regulate asynchronous neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号