首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
水生无脊椎动物的化学通讯邱高峰,堵南山,赖伟(华东师范大学生物学系上海200062)关键词水生无脊椎动物,化学通讯,信息素,利己素,利它素陆生无脊椎动物昆虫化学通讯的研究已经取得了蓬勃发展,迄今为止已被分离、纯化和鉴定的昆虫信息物质有百余种,利用昆虫...  相似文献   

2.
丝裂原活化蛋白激酶(mitogen-activatived protein kinase,MAPK)信号转导途径普遍存在于真核生物,广泛参与细胞生长、分化、生殖、凋亡、应激等多种生理过程。它通过保守的三级激酶级联反应将细胞外信号传递到细胞内,磷酸化底物蛋白或转录因子发挥作用。目前,MAPK途径在哺乳动物的作用机制,尤其是该途径与人类疾病的关系已有大量的研究,但对水生无脊椎动物的研究相对较少。该文综述了目前MAPK在水生无脊椎动物的研究进展,并对今后的研究方向提出建议。  相似文献   

3.
无脊椎动物金属硫蛋白的研究   总被引:14,自引:2,他引:12  
综述了近几十年来有关无脊椎动物金属硫蛋白(MT)的研究,包括软体动物MT、棘皮动物MT、环节动物MT、节肢动物MT(甲壳纲和昆虫纲),分析了无脊椎动物MT与哺乳动物MT的异同,在此基础上,提出以下观点:即从无脊椎动物MT到哺乳动物MT的进化来看,动物MT的进化可能是一种趋同进化的模式。  相似文献   

4.
本文逐月研究了尼日利亚Mfangmfangpond中茄氏旗鳉全年的食性。其食谱按优势多寡出现的次序分别是陆生无脊椎动物、大型植物、水生无脊椎动物、小型甲壳动物、沙粒和藻类。我们将膜翅目、鞘翅目和双翅目昆虫作为其食性的次级项,而全年都出现的有机体碎屑作为初级项。雄鱼较雌鱼捕食了更多的陆生无脊椎动物。茄氏旗在雨季有16项食物组成,但旱季只有7项。就相对重要性而言,陆生和水生无脊椎动物在旱季更大,而大型植物碎屑、小型甲壳动物、沙粒和藻类则在雨季更大。成鱼较幼鱼更多地以外源性无脊椎动物为食。雌鱼较雄鱼有更强的觅食能力;同样,成鱼较幼鱼的觅食能力强得多.  相似文献   

5.
湿地是介于陆地和水体系统之间的具有多种功能的特殊地理综合体和生态系统。水生无脊椎动物是湿地生态系统的一个重要类群,是湿地物质循环和能量流动的重要参与者,其群落特征及空间分布能够反映出湿地的许多特征。本文总结了湿地水生无脊椎动物组成特征,系统介绍了不同类型湿地中水生无脊椎动物群落结构,讨论了非生物因子(底质、温度、水文、溶解氧、pH、氮、磷等)、生物因子(植被、竞争和捕食)及人类活动干扰(电站建设、城镇化等)对湿地水生无脊椎动物群落结构的影响,提出了目前湿地水生无脊椎动物研究存在的问题,并对未来研究方向和重点提出了展望。  相似文献   

6.
在黑水滩河上游河段选取5个断面调查了潜流层大型无脊椎动物及其生境特征,研究微观尺度环境因素对潜流层大型无脊椎动物群落组成及分布的影响。结果表明:调查河段共发现大型无脊椎动物29种,其中水生昆虫种类最多;各断面大型无脊椎动物的密度、生物量和丰富度均随着潜流层深度的增加而降低;潜流层沉积物的中值粒径、垂向水力梯度和垂向渗透系数是影响大型无脊椎动物组成和分布的主要因素,其中最重要的是中值粒径。潜流层无脊椎动物群落变化也可能受到食物源和生物之间相互作用等因素的影响,所有这些因素共同形成了一个复杂的自然过滤系统,控制着潜流层无脊椎动物的群落结构和空间分布。  相似文献   

7.
环境污染对几类水生无脊椎动物内分泌功能扰乱的研究现状   总被引:13,自引:0,他引:13  
EnminZOU 《动物学报》2003,49(5):551-565
近年来,在环境毒理学这门边缘学科中又诞生了一个新的领域,即环境污染对内分泌功能的扰乱。研究发现,许多人工合成的杀虫剂和工业化合物能够扰乱脊椎动物的内分泌功能,这些化合物也存在于水环境中。近年来,这些环境有机污染物是否对水生无脊椎动物的内分泌功能同样具有扰乱作用成了环境内分泌学这个新领域的热点之一。由于近年来的研究侧重于腔肠动物、轮虫、软体动物、甲壳动物及棘皮动物,因此,本文主要介绍有关环境污染物对这几类水生无脊椎动物内分泌功能扰乱的研究进展。另外,对环境污染对水生无脊椎动物内分泌扰乱这个研究热点的现状以及今后的发展方向进行了评述。在从事环境污染对无脊椎动物内分泌功能影响的研究时,研究者必须意识到无脊椎动物和脊椎动物在内分泌机制上的差异,不可随意地在这两大类动物类群之间互相引伸研究结果。  相似文献   

8.
LH/CG受体是一种与G蛋白偶联的在哺乳动物生殖及性功能调节起重要作用的糖蛋白激素受体。介绍了鼠、猪及人等哺乳动物、鸟类、鱼类LH/CG受体基因及昆虫,无脊椎动物等LH/CG类受体的基因克隆表达及特性。  相似文献   

9.
八十年代以来以基因工程技术为主导的分子生物学研究大大丰富了人们对生命过程和本质的认识。基因工程技术在昆虫学研究中日益受到重视。一个新兴的学科─-昆虫分子生物学已经形成。在分子生物学研究中基因探针是必不可少的重要的工具。由于在系统进化上人和哺乳类遗传距离较近,其基因探针具有较大的通用性,所以医学发展起来的人基因探针为哺乳动物研究带来了许多方便。而无脊椎动物的分子生物学研究一向十分薄弱,因此可用于昆虫的基因探针来源困难,研究者常需在实验设计初期对已有的众多基因探针进行预选或自己制备。所以基因探针的选择和使用对昆虫分子生物学研究至为关键。本文就昆虫学常用的基因探针的类型,标记方法,特别是应用等方面选择若干典型实例作一些介绍和评述。  相似文献   

10.
稻田水生昆虫在稻田生态系统功能实现中发挥着重要的作用。本文基于作者对稻田生态系统中水生昆虫多样性研究,系统地介绍了稻田水生昆虫的生态位分布、定量研究与定性研究的采集技术方法与流程,为更好地开展稻田水生昆虫研究提供技术支撑。  相似文献   

11.
Marine Invertebrate Cell Cultures: New Millennium Trends   总被引:6,自引:0,他引:6  
This review analyzes activities in the field of marine invertebrate cell culture during the years 1999 to 2004 and compares the outcomes with those of the preceding decade (1988 to 1998). During the last 5 years, 90 reports of primary cell culture studies of marine organisms belonging to only 6 taxa (Porifera, Cnidaria, Crustacea, Mollusca, Echinodermata, and Urochordata) have been published. This figure represents a 2-fold increase in the annual number of publications over the decade 1988 to 1998. Three other trends distinguish the two reviewed periods. First, in recent years studies attempting to improve cell culture methodologies have decreased, while interest in applications of already existing methodologies has increased. This reflects the effects of short-term cultures in attracting new researchers and scientific disciplines to the field. Second, only 17.8% of the recent publications used long-term cultures, compared with 30.0% of the publications in the previous decade. Third, during recent years research in cell cultures has studied fewer model species more extensively (mainly, Botryllus schlosseri, Crassostrea, Mytilus, Penaeus, and Suberites domuncula), signifying a shift from previous investigations that had studied a more diverse range of organisms. From 1988 to 1998 the phylum Mollusca was the most studied taxon (34.4%), but recent years have seen more studies of Porifera and Crustacea (30.0% and 32.2% of publications) than of Mollusca (21.1%). Still, not even a single established cell line from any marine invertebrate has yet been made available. However, the use of new cellular, genomic, and proteomic tools may fundamentally change our strategy for the development of cell cultures from marine invertebrates.  相似文献   

12.
Despite the successful transfer of mammalian in vitro techniques for use with fish and other vertebrates, little progress has been made in the area of invertebrate tissue culture. This paper describes the development of an in vitro technique for the culture of both cells in suspension and tissue explants from the gill, digestive gland and mantle of the zebra mussel (Dreissena polymorpha) and their successful maintenance in culture for up to 14 days. Cell suspensions from the gills and digestive gland were the most successful technique developed with viability >80% maintained for up to 8 days in culture, suitable for use in short term toxicity tests. Tissue explants from the mantle were also maintained in culture for up to 14 days. This paper describes the challenges involved in the development of a novel in vitro culture technique for aquatic invertebrates.  相似文献   

13.
In recent years, serum-free medium for mammalian cell cultivation has attracted a lot of attention, considering the high cost of production and environmental load involved in developing the conventional animal sera. The use of alternative growth-promoting products in mammalian cell cultivation such as extracts from microalgae has proven to be quite beneficial and environmental-friendly. This research aims to cultivate mammalian cells with growth-promoting factors derived from Chlorococcum littorale. We have established a simple extraction using the ultrasonication method and applied the extract in place of serum on mammalian C2C12 cell lines, 3T3 cell lines, and CHO cell lines to compare and analyze the effectiveness of the extract. Cell passage was conducted in a suspended culture condition with the addition of the extract. The results indicate that the extract from microalgae shows a high proliferation rate in all cell lines without fetal bovine serum. Moreover, it is eco-friendly and has huge potential to replace the traditional cell culture system. It could be applied in the fields of regenerative medicine, gene/cell therapies, as well as cultured meat production.  相似文献   

14.
Mammalian cells have been used in various research fields. More recently, cultured cells have been used as the cell source of “cultured meat.” Cell cultivation requires media containing nutrients, of which glucose and amino acids are the essential ones. These nutrients are generally derived from grains or heterotrophic microorganisms, which also require various nutrients derived from grains. Grain culture, in turn, requires many chemical fertilizers and agrochemicals, which can cause greenhouse gas emission and environmental contamination. Furthermore, grain production is greatly influenced by environmental changes. In contrast, microalgae efficiently synthesize various nutrients using solar energy, water, and inorganic substances, which are widely used in the energy sector. In this study, we aimed to apply nutrients extracted from microalgae in the culture media for mammalian cell cultivation. Glucose was efficiently extracted from Chlorococcum littorale or Arthrospira platensis using sulfuric acid, whereas 18 of the 20 proteinogenic amino acids were efficiently extracted from Chlorella vulgaris using hydrochloric acid. We further investigated whether nutrients present in the algal extracts could be used in mammalian cell cultivation. Although almost all C2C12 mouse myoblasts died during cultivation in a glucose- and amino acid-free medium, the cell death was rescued by adding algal extract(s) into the nutrient-deficient media. This indicates that nutrients present in algal extracts can be used for mammalian cell cultivation. This study is the first step toward the establishment of a new cell culture system that can reduce environmental loads and remain unaffected by the impact of environmental changes.  相似文献   

15.
A series of high-density media for mammalian cell culture were developed by step-fortifications of most nutrient components in RPMI-1640 medium. Each medium constituting the series was constructed to meet in vitro cell growth limitations. Four different cell lines were cultivated in the media series, and their growth characteristics were observed. Maximum cell densities varied in the range of 0.4 to 1.3 x 10(7) cells/mL, depending on cell lines. Cell growth responses to each of the media series were analyzed in terms of cell density and cell mass. Step increases of cell mass in the range of 1.3 to 3.7 g/L were observed according to the step-fortifications of nutrients. Also, the characteristics of each cell line were compared in terms of metabolic yields and specific productions of lactic acid and ammonium ion. The effect of step-fortifications of nutrients on the production of monoclonal antibody was also examined. Apparent differences in metabolic characteristics among cell lines were observed. Experimental results suggested that the different cell sizes and metabolic characteristics of each cell line resulted in cell-line-specific responses to the step-fortifications. The significant influence of nutritional fortifications on high-density culture of mammalian cells was evaluated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
大规模动物细胞培养的问题及对策   总被引:3,自引:0,他引:3  
大规模动物细胞培养在生物技术产业化进程中显示出强大的潜力。本文综述了大规模动物细胞培养过程中出现的问题及其解决办法 ,包括细胞培养环境、基因工程途径改建细胞系及过程监控等。对于这些进展的充分了解对优化细胞培养工艺、提高产品质量具有重要意义  相似文献   

17.
Summary In this report, we show how the in vitro model of mechanically injured confluent monolayers of cultured mammalian cells, consisting in denudation by gentle scraping of areas in the monolayer, can be extended to obtain patterned cell cultures without using preadded attaching matrices. This work was done with a sinusoidal endothelial liver cell line. Patterns for cell growth were drawn in confluent monolayers by cell detaching with the aid of pipette tips followed by reincubation of the culture. In one or some d, acellular patterns were closed by cell migration and proliferation. For unveiling the pattern formed by migration and cell duplication, an enzymatic digestion with trypsin-collagenase solution was applied; after some min, only the migrating and younger cells filling the previous acellular pattern remained attached to the dish, and the now cellular pattern was clearly depicted. After stopping and recovering from the enzymatic treatment, the culture was ready for starting studies such as those related to migration, proliferation, cell-cell interactions. This method allows us to create simple and complex patterns, does not require preparation of the dishes with attaching matrices, and extracellular matrices in acellular areas are absent because of the enzymatic treatment, thus, potentially having many applications in cell culture techniques.  相似文献   

18.
Summary The Flaviviridae include almost 70 viruses, nearly half of which have been associated with human disease. These viruses are among the most important arthropod-borne viruses worldwide and include dengue, yellow fever, and Japanese encephalitis viruses. Morbidity and mortality caused by these viruses vary, but collectively they account for millions of encephalitis, hemorrhagic fever, arthralgia, rash, and fever cases per year. Most of the members of this family are transmitted between vertebrate hosts by arthropod vectors, most commonly mosquitoes or ticks. Transmission cycles can be simple or complex depending on the hosts, vectors, the virus, and the environmental factors affecting both hosts and viruses. Replication of virus in invertebrate hosts does not seem to result in any significant pathology, which suggests a close evolutionary relationship between virus and vector. Another example of this relationship is the ability of these viruses to grow in invertebrate cell culture, where replication usually results in a steady state, persistent infection, often without cytopathic effect. Yields of virus from insect cell culture vary but are generally similar to yields in vertebrate cells. Replication kinetics are comparable between insect and vertebrate cell lines, despite differences in incubation temperature. Both vertebrate and insect cell culture systems continue to play a significant role in flavivirus isolation and the diagnosis of disease caused by these agents. Additionally, these culture systems permit the study of flavivirus attachment, penetration, replication, and release from cells and have been instrumental in the production and characterization of live-attenuated vaccines. Both vertebrate and insect cell culture systems will continue to play a significant role in basic and applied flavivirus research in the future.  相似文献   

19.
The number and use of automated cell culture systems for mammalian cell culture are steadily increasing. Automated cell culture systems require miniaturized analytics with a high throughput to obtain as much information as possible from single experiments. Standard analytics commonly used for conventional bioreactor samples cannot handle the high throughput and the low sample volumes. Spectroscopic methods provide a means of meeting this analytical requirement and afford fast and direct access to process information. In the first part of this review, UV/VIS, fluorescence, Raman, near‐infrared, and mid‐infrared spectroscopy are presented. In the second part of the review, these spectroscopic methods are evaluated in terms of their applicability in the new field of mammalian cell culture processes in automated cell culture systems. Unlike standard bioreactors, these automated systems have special requirements that apply to the use of spectroscopic methods. Therefore, they are compared with regard to cell culture automation, throughput, and required sample volume.  相似文献   

20.
Therapeutic monoclonal antibodies (mAbs) are biologics produced using mammalian cells and represent an important class of biotherapeutics. Aggregation in mAbs is a major challenge that can be mitigated by rigorous and reproducible upstream and downstream approaches. The impact of frequently used surfactants, like polysorbate 20, polysorbate 80, poloxamer 188, and 2-hydroxypropyl-beta-cyclodextrin, on aggregation of mAbs during cell culture was investigated in this study. Their impact on cell proliferation, viability, and mAb titer was also investigated. Polysorbate 20 and polysorbate 80 at the concentration of 0.01 g/L and poloxamer 188 at the concentration of 5 g/L were found to be effective in reducing aggregate formation in cell culture medium, without affecting the cell growth or viability. Furthermore, their presence in culture media resulted in increased cell proliferation as compared to the control group. Addition of these surfactants at the specified concentrations increased monomer production while decreasing high molecular weight species in the medium. After mAbs were separated, using protein “A” chromatography, flasks with surfactant exhibited improved antibody stability, when analyzed by DLS. Thus, while producing aggregation-prone mAbs via mammalian cell culture, these excipients may be employed as cell culture medium supplements to enhance the quality and yield of functional mAbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号