首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the extraordinary microbial diversity and importance of fungi as enzyme producers, the search for new biocatalysts with special characteristics and possible applications in biocatalysis is of great interest. Here, we report the performance in the resolution of racemic ibuprofen of a native enantioselective lipase from Aspergillus niger, free and immobilized in five types of support (Accurel EP-100, Amberlite MB-1, Celite, Montmorillonite K10 and Silica gel). Amberlite MB-1 was found to be the best support, with a conversion of 38.2%, enantiomeric excess of 50.7% and enantiomeric ratio (E value) of 19 in 72 h of reaction. After a thorough optimization of several parameters, the E value of the immobilized Aspergillus niger lipase was increased (E = 23) in a shorter reaction period (48 h) at 35°C. Moreover, the immobilized Aspergillus niger lipase maintained an esterification activity of at least 80% after 8 months of storage at 4°C and could be reused at least six times.  相似文献   

2.
Magnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. The synthesized materials were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With glutaraldehyde as the coupling agent, the lipase from Serratia marcescens ECU1010 (SmL) was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The results showed that the immobilized protein load could reach as high as 35.2 mg protein g−1 support and the activity recovery was up to 62.0%. The immobilized lipase demonstrated a high enantioselectivity toward (+)-MPGM (with an E-value of 122) and it also displayed the improved thermal stability as compared to the free lipase. When the immobilized lipase was employed to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM] in water/toluene biphasic reaction system for 11 consecutive cycles (totally 105 h), still 59.6% of its initial activity was retained, indicating a high stability in practical operation.  相似文献   

3.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

4.
Lipase from Candida rugosa was immobilized by adsorption onto a macroporous copolymer support. Under optimum conditions the maximum amount of protein bound was 15.4 mg/g and the immobilization efficiency was 62%. The kinetics of lipase binding to the selected polymer carrier was assessed by using a general model of topochemical reactions. The effect of temperature on adsorption was thoroughly investigated, as was the adsorption mechanism itself. Analysis of the proposed kinetic model and the specific kinetic parameters measured suggest that surface kinetics control the adsorption process. According to the activation energy (E a) and the rate constant, k, the enzyme has rather a high affinity for the support's active sites. The immobilized enzyme was used to catalyse the hydrolysis of palm oil in a lecithin/isooctane reaction system, in which the enzyme's activity was 70% that of the free enzyme. Kinetic parameters such as maximum velocity (V max) and the Michaelis constant (K m) were determined for the free and the immobilized lipase. Following repeated use, the immobilized lipase retained 56% of its initial activity after the fifth hydrolysis cycle. Received: 3 April 1998 / Received revision: 28 July 1998 / Accepted: 29 July 1998  相似文献   

5.
The overall objective of this study is to evaluate the morphological [scanning electron microscopy (SEM)], physicochemical [differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), chemical composition analysis, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR)], and biochemical properties of Candida rugosa lipase (CRL) immobilized on a natural biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. CRL was immobilized by physical adsorption with efficiency of 30%. Compared with free CRL enzyme, there were slight changes in immobilized CRL activity as a function of temperature (from 37°C to 45°C), but a similar optimal pH value of 7.0. Inactivation rate constants for immobilized CRL enzyme were 0.009 and 0.334 h−1, and half-lives were 77 and 2 h at 40°C and 60°C, respectively. Kinetic parameters obtained for immobilized CRL include the Michaelis–Menten constant of K m = 213.18 mM and maximum reaction velocity of V max = 318.62 U/g. The operational stability of immobilized CRL was tested repeatedly, and after 12 cycles of reuse, the enzyme retained 50% activity. Based on our results, we propose that PHBV-immobilized CRL could serve as a promising biocatalyst in several industrial applications.  相似文献   

6.
In the present study, iron oxide magnetite nanoparticles, prepared through a co-precipitation method, were coated with phosphonic acid or iminodicarboxylic acid derivatives of calix[4]arene to modulate their surfaces with different acidic groups. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through sol–gel encapsulation. The catalytic activities and enantioselectivities of the two encapsulated lipases in the hydrolysis reaction of (R/S)-naproxen methyl ester and (R/S)-2-phenoxypropionic acid methyl ester were assessed. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives; the encapsulated lipase with the phosphonic acid derivative of calix[4]arene had an excellent rate of enantioselectivity against the (R/S)-naproxen methyl and (R/S)-2-phenoxypropionic acid methyl esters, with E = 350 and 246, respectively, compared to the free enzyme. The encapsulated lipases (Fe-Calix-N(COOH)) and (Fe-Calix–P) showed good loading ability and little loss of enzyme activity, and the stability of the catalyst was very good; they only lost 6–11% of the enzyme’s activity after five batches.  相似文献   

7.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

8.
In this study, the methyl esters of the long chain fatty acids (biodiesel) were synthesized by methanolysis of canola oil by immobilized lipase. Lipase from Thermomyces lanuginosus was immobilized by both physical adsorption and covalent attachment onto polyglutaraldehyde activated styrene–divinylbenzene (STY–DVB) copolymer, which is synthesized by using high internal phase emulsion (polyHIPE). Two different STY–DVB copolymers were evaluated: STY–DVB copolymer and STY–DVB copolymer containing polyglutaraldehyde (STY–DVB–PGA). Lipase from T. lanuginosus was immobilized with 60% and 85% yield on the hydrophobic microporous STY–DVB and STY–DVB–PGA copolymer, respectively. Biodiesel production using the latter lipase preparation was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 97% at 50 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

9.
Candida rugosa lipase was immobilized on magnetic nanoparticles supported ionic liquids having different cation chain length (C1, C4 and C8) and anions (Cl, BF4 and PF6). Magnetic nanoparticles supported ionic liquids were obtained by covalent bonding of ionic liquids–silane on magnetic silica nanoparticles. The particles are superparamagnetic with diameter of about 55 nm. Large amount of lipase (63.89 mg/(100 mg carrier)) was loaded on the support through ionic adsorption. Activity of the immobilized lipase was examined by the catalysis of esterification between oleic acid and butanol. The activity of bound lipase was 118.3% compared to that of the native lipase. Immobilized lipase maintained 60% of its initial activity even when the temperature was up to 80 °C. In addition, immobilized lipase retained 60% of its initial activity after 8 repeated batches reaction, while no activity was detected after 6 cycles for the free enzyme.  相似文献   

10.
In the present study, the recovery of activity of Candida antarctica lipase B (CALB) immobilized onto surface-modified rice husk ash (RHA) was 90% for both cross-linking and adsorption methods. Both cross-linked and adsorbed immobilized preparations were very stable, retaining more than 48% of their activity over the range of temperatures studied. The optimum temperature and optimum pH values were 37?°C and 7.0, respectively for both immobilized preparations, while the relative activities after storage at 4.0?°C for 60 days were 55% and 65% using cross-linking and adsorption methods, respectively. Also, the activity of the immobilized lipase began to decrease after 10 cycles, more than 58% of the initial activities were still retained after 10 cycles for both immobilization methods. These results indicated that lipase immobilized by cross-linking and adsorption not only effected activity recovery, but also remarkably effected stability, reusability and application adaptability. It can be concluded that, surface-modified RHA can be used as alternative supports for immobilization of CALB for polymerization reactions.  相似文献   

11.
This research describes the immobilization on glyoxyl, cyanogen bromide or octyl agarose beads of a purified lipase from Staphylococcus warneri strain EX17 (SWL), and the effect on its properties. The immobilization on glyoxyl-agarose at pH 10 and 25 °C, conditions in which the enzyme is readily inactivated, required the stabilization of the soluble enzyme. This was attained by the addition of 25% glycerol. Using this additive, immobilization on glyoxyl-agarose beads proceeded very quickly with good activity retention around 80%. This was the most stable preparation under thermal inactivation at pH 5, 7 and 9, in the presence of either cosolvents or detergents. This preparation was hyperactivated by concentrations of Triton X-100, which would produce negative effects over enzyme activity when using the other SWL preparations. Immobilized SWL preparations hydrolyzed different chiral esters, such as (±)-methyl mandelate, (±)-2-O-butyryl-2-phenylacetic acid, and (±)-2-hydroxy-4-phenyl-butyric acid ethyl ester, being its specificity depended on the immobilization protocol. The enantiospecificity was also strongly modulated by the immobilization. Thus, using HPBEt as substrate, octyl-SWL exhibited an opposite enantiospecificity to the other two biocatalysts. This preparation was the most enantioselective in the hydrolysis of (±)-2-O-butyryl-2-phenylacetic acid (E = 56.3).  相似文献   

12.
Summary Lipase from Rhizopus delemar was immobilized by entrapment with photo-crosslinkable resin prepolymers or urethane prepolymers or by binding to various types of porous silica beads. The immobilized lipase preparations thus obtained were examined for their activity in converting olive oil to an interesterified fat (cacao butter-like fat), whose oleic acid moieties at 1- and 3-positions were replaced with stearic acid moieties, in the reaction solvent n-hexane. Although all of the immobilized preparations exhibited some activity, lipase adsorbed on Celite and then entrapped with a hydrophobic photo-crosslinkable resin prepolymer showed the highest activity, about 75% of that of lipase simply adsorbed onto Celite. Entrapment markedly enhanced the operational stability of lipase.Dedicated to Professor H. Holzer, Freiburg University, on his 60th birthday (June 13, 1981)  相似文献   

13.
Hydrophobic silica aerogels modified with methyl group were applied as support to immobilize Candida rugosa lipase (CRL). At the adsorption process, different alcohols were used to intensify the immobilization of CRL. The results showed that n-butanol wetting the hydrophobic support prior to contacting with enzyme solution could promote lipase activity, but the adsorption quantity onto the support decreased. Based on this, a novel immobilization method was proposed: the support contacted with enzyme solution without any alcohols, and then the immobilized enzymes were activated by 90% (V) n-butanol solution. The experimental results showed that this method could keep high adsorption quantity (413.0 mg protein/g support) and increase the lipase specific activity by more than 50%. To improve the stability of immobilized lipase, the support after adsorption was contacted with n-octane to form an oil layer covering the immobilized lipases, thus the leakage can be decreased from over 30–4% within 24 h. By utilizing proper cosolvents, a high enzyme activity and loading capacity as well as little loss of lipase was achieved without covalent linkage between the lipase and the support. This is known to be an excellent result for immobilization achieved by physical adsorption only.  相似文献   

14.
On the issue of interfacial activation of lipase in nonaqueous media   总被引:2,自引:0,他引:2  
The question of whether lipases can be activated by adsorption onto an interface in organic solvents was addressed using Rhizomucor miehei lipase as a model. In aqueous solution, this enzyme was shown to undergo a marked interfacial activation. However, lipase (either lyophilized or precipitated from water with acetone) suspended in ethanol or 2-(2-ethoxyethoxy)ethanol containing triolein exhibited no jump in catalytic activity when the concentration of triolein exceeded its solubility in these solvents, thereby resulting in formation of an interface. To test whether the lack of interfacial activation was due to the insolubility of the enzyme in organic media, lipase was covalently modified with poly(ethylene glycol). The modified lipase, although soluble in nonaqueous media, was still unable to undergo interfacial activation, regardless of the hydrophobicity of the interface. This inability was found to be caused by the absence of adsorption of lipase onto interfaces in organic solvents, presumably because of the absence of the hydrophobic effect (the driving force of lipase adsorption onto hydrophobic interfaces in water) in such media. The uncovered lack of interfacial adsorption and activation suggests that the short alpha-helical "lid" covering the active center of the lipase remains predominantly closed in nonaqueous media, thus contributing to diminished enzymatic activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

16.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, the Candida rugosa lipase (CRL) was encapsulated within a chemically inert sol–gel support prepared by polycondensation with tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) in the presence and absence of sporopollenin and activated sporopollenin as additive. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of rasemic Naproxen methyl ester that was studied in aqueous buffer solution/isooctane reaction system. The results indicated that the sporopollenin based encapsulated lipase particularly had higher conversion and enantioselectivity compared to the sol–gel free lipase. In this study, excellent enantioselectivity (E > 400) has been noticed for most lipase preparations (E = 166 for the free enzyme) with an ee value ~98% for S-Naproxen. Moreover, (S)-Naproxen was recovered from the reaction mixture with 98% optical purity.  相似文献   

17.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

18.
Abstract

We have investigated the direct enantioselective amidation of mandelic acid with ammonia, catalyzed by a variety of commercial lipases including those from Candida rugosa, Mucor miehei, Pseudomonas sp., Rhizomucor miehei, and Thermomyces lanuginosus covalently immobilized onto Florisil® support via glutaraldehyde and polysuccinimide spacer arms. All the immobilized lipase preparations tested preferentially amidated the R isomer of mandelic acid. The highest amide yields were obtained for immobilized Pseudomonas sp. lipase preparations under the optimized reaction conditions. After 24 h of amidation, the reaction had proceeded with an excellent yield (50%) and enantiopurity (> 99%). The immobilized Pseudomonas sp. lipase preparations catalyzed the amidation reaction with the same yield and enantioselectivity. The enzyme immobilized via a glutaraldehyde spacer arm showed better reusability than that immobilized via a polysuccinimide spacer arm.

In view of these results, it is revealed that the direct amidation of mandelic acid catalyzed by the immobilized Pseudomonas sp. lipases is a facile and effective methodology for obtaining (S)-mandelic acid and (R)-mandelamide.  相似文献   

19.
Adsorption onto solid supports has proven to be an easy and effective way to improve the mechanical and catalytic properties of lipases. Covalent binding of lipases onto the support surface enhances the active lifetime of the immobilized biocatalysts. Our study indicates that mesoporous silica gels grafted with various functions are ideal supports for both adsorptive and covalent binding for lipase B from Candida antarctica (CaLB). Adsorption of CaLB on phenyl-functionalized silica gels improved in particular its specific activity, whereas adsorption on aminoalkyl-modified silica gels enabling covalent binding with the proper reagents resulted in only moderate specific activity. In addition, adsorption on silica gels modified by mixtures of phenyl- and aminoalkyl silanes significantly increased the productivity of CaLB. Furthermore, CaLB adsorbed onto a phenyl/aminoalkyl-modified surface and then treated with glutardialdehyde (GDA) as cross-linking agent provided a biocatalyst of enhanced durability. Adsorbed and cross-linked CaLB was resistant to detergent washing that would otherwise physically deactivate adsorbed CaLB preparations. The catalytic properties of our best immobilized CaLB variants, including temperature-dependent behavior were compared between 0 and 70 °C with those of two commercial CaLB biocatalysts in the continuous-flow kinetic resolutions of racemic 1-phenylethanol rac-1a and 1-phenylethanamine rac-1b.  相似文献   

20.
Gum arabic coated magnetic Fe3O4 nanoparticles (GAMNP) were prepared by chemical co-precipitation method and their surface morphology, particle size and presence of polymer-coating was confirmed by various measurements, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and Fourier transform infra red (FTIR) analysis. Magnetic particles were employed for their potential application as a support material for lipase immobilization. Glutaraldehyde was used as a coupling agent for efficient binding of lipase onto the magnetic carrier. For this purpose, the surface of a Candida rugosa lipase was initially coated with various surfactants, to stabilize enzyme in its open form, and then immobilized on to the support. This immobilized system was used as a biocatalyst for ethyl isovalerate, a flavor ester, production. The influence of various factors such as type of surfactant, optimum temperature and pH requirement, organic solvent used, amount of surfactant in coating lipase and effect of enzyme loadings on the esterification reaction were systematically studied. Different surfactants were used amongst which non-ionic surfactant performed better, showing about 80% esterification yield in 48 h as compared to cationic/anionic surfactants. Enhanced activity due to interfacial activation was observed for immobilized non-ionic surfactant–lipase complex. The immobilized surfactant coated lipase activity was retained after reusing seven times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号