首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cGMP-dependent protein kinase from bovine lung has been purified to homogeneity using 8-(2-aminoethyl)-amino adenosine 3':5'-monophosphate/Sepharose. Conditions for adsorption of holoenzyme to the affinity chromatography media followed by competitive ligand elution with cGMP have been determined. The holoenzyme of 150,000 molecular weight is composed of two 74,000 molecular weight subunits which are linked in part by disulfide bridges. Two moles of cGMP are bound per mol of holoenzyme compatible with 1 mol of cGMP/monomer. Dissociation of subunits does not occur upon cGMP binding and protein kinase activation. cGMP-dependent protein kinase has an isoelectric point of 5.4 and a Stokes radius of 50 A. The enzyme is asymmetric with an f/f0 of 1.42 and an axial ratio of 7.4. Determination of enzyme activity at varying concentrations of ATP revealed that cGMP increased the Vmax for ATP without significant effect on the Km. The purified enzyme was maximally active at 5 mM Mg2+; other divalent cations could not substitute for Mg2+. In the presence of Mg2+, strong inhibitory effects of other cations were observed with Mn2+, greater than Zn2+, greater than Co2+ greater than Ca2+. Although maximal cGMP-dependence was observed at pH 5.7 to 7.0, basal activity rose at higher pH values to approach activity observed with cGMP. A molecular model comparing cGMP-dependent protein kinase with cAMP-dependnet protein kinase is presented.  相似文献   

2.
Using affinity chromatography on 8-(2-aminoethyl)-amino-cAMP Sepharose, the cGMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from tissues of the prawn Palaemon adspersus was purified to homogeneity as demonstrated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The degree of enzyme purification was 11 200, recovery--6.5%; the isoelectric point for the enzyme lies at 5.5. Data from gel filtration and centrifugation in sucrose density gradient suggest that the dimer of cGMP-dependent protein kinase has a molecular weight of 157 000, sedimentation coefficient of 7.2S and a Stokes' radius of 50 A. An active form of the enzyme with Mr = 76 500 (4.5S, 39 A) which apparently represents a subunit of the cGMP-dependent protein kinase was discovered. The activity of the both enzyme forms are stimulated by low concentrations of cGMP (Ka = 1.10(-7) M). The monomer and dimer molecules appear as prolate ellipsoids with axial ratios close to 7. The native cGMP-dependent protein kinase is probably made up of two subunits each of which contains a regulatory and a catalytic sites.  相似文献   

3.
The biochemical differences among cGMP phosphodiesterases in platelets have not been thoroughly examined, primarily due to the lack of sufficient purified material. This report describes a simple method developed to isolate a specific bovine platelet cGMP phosphodiesterase. This enzyme is cytosolic in its native form and was purified to an apparent homogeneity by ion-exchange chromatography, affinity chromatography, and density gradient centrifugation. Cyclic GMP binds to a "pseudo-site" when the catalytic site is deprived of Mg++. The affinity for cGMP at alkaline pH in presence of EDTA and IBMX (Kd = 60 nM) suggests that the removal of Mg++ by EDTA converts the catalytic site to a binding site. A ligand affinity chromatography was designed to take advantage of these features. The core enzyme has a molecular weight 190,000 composed of 2 subunits (MW 95,000) and has a specific activity of 2.5 mumol/min/mg. Moreover, this enzyme was phosphorylated by cAMP- and cGMP-dependent protein kinases, suggesting that its activity could be indirectly regulated by cyclic nucleotides. Agents elevating cGMP and cAMP inhibit platelet activation by inhibiting protein kinase C and thrombin induced hydrolysis of phosphatidylinositol 4,5 diphosphate. The antiaggregating properties of some of these agents might therefore be attributed to the fact that they are inhibitors of phosphodiesterases.  相似文献   

4.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

5.
Using ion-exchange chromatography and gel filtration, cGMP-dependent protein kinase was purified from prawn tissues 220-fold with a yield of activity of 12%. The apparent Ka values for cGMP, cAMP and 8-Br-cGMP are 1 . 10(-7), 5 . 10(-6) and 5 . 10(-8) M, respectively; the apparent Km values for ATP in the presence of cGMP is 9 . 10(-6) M. The cGMP-stimulated protein kinase activity was observed only in the presence of SH-compounds and high Mg2+ concentrations (500-100 mM). The protein kinase demonstrated a broad pH optimum wih a maximum at pH 6.8-7.2. The elution volume of the enzyme during gel filtration corresponded to a globular protein with molecular weight of 140,000.  相似文献   

6.
Methacholine (3 microM) and sodium nitroprusside (300 microM) increased cGMP-dependent protein kinase activity ratios (activity without cGMP divided by activity with 2 microM cGMP) in canine tracheal smooth muscle from a control value of 0.47 to 0.55 and 0.71, respectively. This correlates with 3-fold and 6-fold increases in cGMP concentrations in response to methacholine and sodium nitroprusside, respectively. Addition of charcoal to the homogenizing buffer prior to homogenization had no significant effect on the cGMP-dependent protein kinase response to either agent, suggesting that activation of the enzyme was not occurring as a result of cGMP release during homogenization. In order to limit cGMP dissociation from cGMP-dependent protein kinase during the assay procedure, it was necessary to perform assays at a reduced temperature (0 degree C) and with an abbreviated incubation time (2.5 min). When assayed at 30 degrees C, activated cGMP-dependent protein kinase rapidly lost activity. This inactivation occurred whether the enzyme had been activated exogenously, by exposing a supernatant fraction of canine trachealis to 0.1 microM cGMP, or endogenously, by treating intact canine trachealis with methacholine or sodium nitroprusside. By assaying instead at 0 degree C, the inactivation of cGMP-dependent protein kinase was minimized. Therefore, the activity ratio obtained by this new modified assay provided an estimate of the endogenous activation state of cGMP-dependent protein kinase. The data indicate that cGMP responses in canine trachealis to both methacholine and sodium nitroprusside are functionally linked to activation of cGMP-dependent protein kinase and are consistent with the hypothesis that cGMP, via cGMP-dependent protein kinase activation, regulates smooth muscle contractility.  相似文献   

7.
Methacholine (3 μM) and sodium nitroprusside (300 μM) increased cGMP-dependent protein kinase activity ratios (activity without cGMP divided by activity with 2 μM cGMP) in canine tracheal smooth muscle from a control value of 0.47 to 0.55 and 0.71, respectively. This correlates with 3-fold and 6-fold increases in cGMP concentrations in response to methacholine and sodium nitroprusside, respectively. Addition of charcoal to the homogenizing buffer prior to homogenization had no significant effect on the cGMP-dependent protein kinase response to either agent, suggesting that activation of the enzyme was not occurring as a result of cGMP release during homogenization. In order to limit cGMP dissociation from cGMP-dependent protein kinase during the assay procedure, it was necessary to perform assays at a reduced temperature (0°C) and with an abbreviated incubation time (2.5 min). When assayed at 30°C, activated cGMP-dependent protein kinase rapidly lost activity. This inactivation occurred whether the enzyme had been activated exogenously, by exposing a supernatant fraction of canine trachealis to 0.1 μM cGMP, or endogenously, by treating intact canine trachealis with methacholine or sodium nitroprusside. By assaying instead at 0°C, the inactivation of cGMP-dependent protein kinase was minimized. Therefore, the activity ratio obtained by this new modified assay provided an estimate of the endogenous activation state of cGMP-dependent protein kinase. The data indicate that cGMP responses in canine trachealis to both methacholine and sodium nitroprusside are functionally linked to activation of cGMP-dependent protein kinase and are consistent with the hypothesis that cGMP, via cGMP-dependent protein kinase activation, regulates smooth muscle contractility.  相似文献   

8.
The levels of guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase in the larval and pupal tissues of Bombyx mori were estimated. This activity was highest in the fat body of the female pupa. The enzyme showed a significant variation in activity during development of adult in female. Male silkworm gave less significant results. The cGMP-dependent kinase partially purified from the pupa could be activated by a high concentration of adenosine 3′,5′-monophosphate (cAMP) as reported for cGMP-dependent protein kinases from other sources. The nature of the enzyme thus activated and that of the enzyme activated by a low concentration of cGMP were found to be similar in several aspects. This indicates that the intrinsic activity of protein kinase from the silkworm pupa is independent of the kind of cyclic nucleotide as an activator.  相似文献   

9.
The allosteric regulation of binding to and the activation of cGMP-dependent protein kinase (cGMP kinase) was studied under identical conditions at 30 degrees C using three forms of cGMP-kinase which differed in the amino-terminal segment, e.g. native cGMP kinase, phosphorylated cGMP kinase which contained 1.4 +/- 0.4 mol phosphate/subunit and constitutively active cGMP kinase which lacked the amino-terminal dimerization domain. These three enzyme forms have identical kinetic constants, e.g. number of cGMP-binding sites, Km values for MgATP and the heptapeptide kemptide, and Vmax values. In the native enzyme, MgATP decreases the affinity for binding site 1. This effect is abolished by 1 M NaCl. In contrast, high concentrations of Kemptide increase the affinity of binding site 2 about fivefold. Under the latter conditions, identical Kd values of 0.2 microM were obtained for sites 1 and 2. Salt, MgATP and Kemptide do not affect the binding kinetics of the phosphorylated or the constitutively active enzyme, suggesting that allosteric regulation depends solely on the presence of a native amino-terminal segment. Cyclic GMP activates the native enzyme at Ka values which are identical with the Kd values for both binding sites. The activation of cGMP-dependent protein kinase is noncooperative but the Ka value depends on the substrate peptide concentration. These results show that the activity of cGMP kinase is primarily regulated by conformational changes within the amino-terminal domain.  相似文献   

10.
Plasma membrane (Ca2+-Mg2+)ATPase purified from bovine aortic microsomes by calmodulin affinity chromatography was incorporated into soybean phospholipid liposomes. In the reconstituted proteoliposomes, a protein corresponding to the ATPase was phosphorylated by [gamma-32P]ATP in the presence of cGMP and cGMP-dependent protein kinase. Both the affinity for Ca2+ and the maximum Ca2+ uptake activity by the proteoliposomes were increased by the cGMP-dependent phosphorylation, and there was good parallelism between the Ca2+-uptake rate and the extent of phosphorylation. These results strongly suggest that the Ca2+-transport ATPase of the vascular smooth muscle plasma membrane is regulated through its cGMP-dependent phosphorylation.  相似文献   

11.
Properties of a cGMP-dependent monomeric protein kinase from bovine aorta   总被引:1,自引:0,他引:1  
A form of cGMP-dependent protein kinase (cGK) that was different from previously described cGK was purified from bovine aorta smooth muscle. The partial amino-terminal sequencing of this enzyme indicated that it was derived by endogenous proteolysis of the type I beta isozyme of cGK. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this form migrated as a smaller protein (Mr = 70,000) than the parent cGK (Mr = 80,000), and since the calculated nondenatured Mr was approximately 89,000 compared to Mr = 170,000 for the dimeric native enzyme, it represented a monomeric form of cGK. The monomer bound approximately 2 mol of [3H]cGMP per mol of monomer, although it had only one rapid component in [3H]cGMP dissociation assays as compared to one rapid and one slow component for the native cGK. The specific catalytic activity of the kinase was similar to that of the native enzyme, suggesting that the catalytic domain was essentially intact. The monomeric cGK incorporated significant 32P when incubated with Mg2+ and [gamma-32P]ATP in the presence of cGMP, although the phosphorylation proceeded at a slower rate than that obtained with native cGK. In contrast to previous reports of monomeric forms of cGK, this monomer was highly cGMP-dependent, although it had a slightly higher Ka (0.8 microM) for cGMP than that of the native enzyme (0.4 microM) and a low Hill coefficient of 1.0 (1.6 for the native enzyme). The cGMP dependence of the monomer did not decrease with dilution, implying that the cGMP dependence was not due to monomer-monomer interactions in the assay. The results indicated that the catalytic domain, cGMP binding domain(s), and inhibitory domain of cGK interact primarily within the same subunit rather than between subunits of the dimer as previously hypothesized for dimeric cGK.  相似文献   

12.
Rat liver nuclear protein kinase NI, which appears in the flowthrough of DEAE-Sephadex columns, has been purified approximately 15,000-fold from soluble nuclear protein with yields of up to 10%. The method of purification involved chromatography of the DEAE-flowthrough protein successively on phosvitin-Sepharose and casein-Sepharose followed by rechromatography on phosvitin-Sepharose. The purified enzyme has an s20,w and molecular weight of 3.7 and 47,000, respectively, as determined by sucrose density gradient centrifugation in 0.4 M NaCl. A similar molecular weight of 42,000 was determined by gel filtration using Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed a single polypeptide with a molecular weight of 25,000. Protein kinase NI therefore consists of a dimer of two identical subunits. Protein kinase NI exhibits maximal activity on casein substrate and is not stimulated by 10(-5) to 10(-4) M cAMP or cGMP when either casein or histone H2b is used as a substrate.  相似文献   

13.
The binding of [3H]cGMP to purified beef lung cGMP-dependent protein kinase (cG kinase) was examined using two methods of membrane filtration which avoided loss of bound [3H]cGMP. The enzyme bound 1.6-2.0 mol of [3H]cGMP/mol of monomer. If the kinase was saturated with [3H]cGMP and then excess unlabeled cGMP was added, [3H]cGMP dissociated from the enzyme as two approximately equal components (Sites 1 and 2). When 8-bromo-cGMP or cIMP was added to the [3H]cGMP-binding reaction at a concentration sufficient to competitively inhibit binding by greater than 50%, the relative amount of the slower or faster component, respectively, of [3H]cGMP dissociation decreased during the cGMP chase. The data indicated that the cG kinase, like its cAMP-dependent protein kinase homologue, possesses two highly conserved intrachain cyclic nucleotide-binding sites which have different dissociation rates and analog specificity. The Ka of the kinase for cGMP was about 20-fold lower using histone instead of heptapeptide as substrate. Aging of the enzyme caused conversion to a higher Ka form of the kinase and an apparent increase in the Site 1 cGMP dissociation rate. Using fresh enzyme and heptapeptide as substrate, Site 1 occupation occurred at lower concentrations of cGMP than did Site 2 occupation, and was associated with an increase in protein kinase activity. However, kinase activity appeared to correlate better with total cGMP binding than with binding to either of the two sites, and the activation by cGMP exhibited positive cooperativity (n = 1.57). It is suggested that both intrachain sites are involved in protein kinase activation. E2 + 4 cGMP in equilibrium E2 . cGMP4 The cG kinase could be photoaffinity-labeled using 8-azido-[32P]cAMP. When the labeled cG kinase was trypsin-treated followed by sodium dodecyl sulfate-slab gel electrophoresis, a single major peptide of approximate Mr = 12,000 was resolved.  相似文献   

14.
A purified bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) was rapidly phosphorylated by purified bovine lung cGMP-dependent protein kinase (cGK). Within a physiological concentration range, cGK catalyzed phosphorylation of cG-BPDE at a rate approximately 10 times greater than did equimolar concentrations of purified catalytic subunit of cAMP-dependent protein kinase (cAK). cG-BPDE was a poor substrate for either purified protein kinase C or Ca2+/calmodulin-dependent protein kinase II. Binding of cGMP to the cG-BPDE binding site was required for phosphorylation since (a) phosphorylation of cG-BPDE by the catalytic subunit of cAK was cGMP-dependent, (b) phosphorylation of cG-BPDE in the presence of a cGMP analog specific for activation of cGK was cGMP-dependent, and (c) occupation of the cG-BPDE hydrolytic site with competitive inhibitors did not produce the cGMP-dependent effect. cGMP-dependent phosphorylation of cG-BPDE by both cGK and cAK occurred at serine. Proteolytic digestion of cG-BPDE phosphorylated by either cGK or cAK revealed the same phosphopeptide pattern, suggesting that phosphorylation by the two kinases occurred at the same or adjacent site(s). Tryptic digestion of cG-BPDE phosphorylated by cGK and [gamma-32P]ATP produced a single major phosphopeptide of approximately 2 kDa with the following amino-terminal sequence: Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg- Radioactivity was released during the third cycle of Edman degradation. cG-BPDE is one of few specific in vitro cGK substrates of known function to be identified. Elevation of intracellular cGMP may cause phosphorylation of cG-BPDE by modulating the substrate site availability as well as by activating cGK. Such regulation would greatly increase the selectivity of the phosphorylation of cG-BPDE and would represent a unique mechanism of action of a cyclic nucleotide or other second messenger.  相似文献   

15.
Cardiac sarcolemmae from guinea pig ventricles were purified and incubated with cGMP-dependent protein kinase. In the presence of the purified kinase plus 10(-5) M cGMP or 8-Br-cGMP, a protein of approximately 50 kD, (Kilodalton) was phosphorylated. This membrane-associated cGMP-dependent protein kinase substrate is similar in MW to the regulatory subunit of the cAMP-dependent protein kinase, which is known to be a substrate for the cGMP-dependent protein kinase. Thus, this substrate, the identity of which remains to be proven, may be a possible mediator of cGMP-mediated control of cardiac function.  相似文献   

16.
Serines 64 and 79 are homologous residues that are juxtaposed to the autoinhibitory pseudosubstrate site in cGMP-dependent protein kinase type Ialpha and type Ibeta (PKG-Ialpha and PKG-Ibeta), respectively. Autophosphorylation of this residue is associated with activation of type I PKGs. To determine the role of this conserved serine, point mutations have been made in PKG-Ialpha (S64A, S64T, S64D, and S64N) and PKG-Ibeta (S79A). In wild-type PKG-Ialpha, basal kinase activity ratio (-cGMP/+cGMP) is 0.11, autophosphorylation increases this ratio 3-fold, and the K(a) and K(D) values for cGMP are 127 and 36 nm, respectively. S64A PKG-Ialpha basal kinase activity ratio increases 2-fold, cGMP binding affinity increases approximately 10-fold in both K(a) and K(D), and activation by autophosphorylation is slight. S64D and S64N mutants are nearly constitutively active in the absence of cGMP, cGMP binding affinity in each increases 18-fold, and autophosphorylation does not affect the kinase activity of these mutants. Mutation of the homologous site in PKG-Ibeta (S79A) increases the basal kinase activity ratio 2-fold and cGMP binding affinity 5-fold over that of wild-type PKG-Ibeta. The combined results demonstrate that a conserved serine juxtaposed to the pseudosubstrate site in type I PKGs contributes importantly to enzyme function by increasing autoinhibition and decreasing cGMP binding affinity.  相似文献   

17.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

18.
The phosphorylation of the enzyme tyrosine hydroxylase by the cGMP pathway was investigated in chromaffin cells from the bovine adrenal medulla. The nitric oxide donor, sodium nitroprusside, and the natriuretic peptide, C-type natriuretic peptide, which are able to increase cGMP levels and cGMP-dependent protein kinase activity, produced significant increases in the phosphorylation level of tyrosine hydroxylase in a time- and concentration-dependent manner. The pretreatment of the cells with the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one blocked the effect of sodium nitroprusside. This result indicates that cGMP production by this enzyme mediated this effect. Experiments performed with a cGMP-dependent protein kinase inhibitor, the Rp-isomer of 8-(4-chlorophenylthio)-cyclic guanosine monophosphorothioate, which blocked the effects of both sodium nitroprusside and C-type natriuretic peptide, demonstrated that the phosphorylation increases evoked by both compounds were mediated by the activation of cGMP-dependent protein kinase. In cells incubated with the adenylyl cyclase activator, forskolin, an increase in the phosphorylation level of the tyrosine hydroxylase was also found. When cells were treated simultaneously with forskolin and sodium nitroprusside or C-type natriuretic peptide, an additive effect on tyrosine hydroxylase phosphorylation was not observed. This suggests that cAMP- and cGMP-dependent protein kinases may phosphorylate the same amino acid residues in the enzyme. Western blot analysis of soluble extracts from chromaffin cells detected specific immunoreactivity for two different commercial antibodies raised against cGMP-dependent protein kinase (both Ialpha and Ibeta isoforms). Electrophoretic mobility correlates with that of purified PKG Ialpha. Because the phosphorylation of the tyrosine hydroxylase correlates with increases in its enzymatic activity and thus with augmentation in the cell capacity to synthesize catecholamines, our results indicate that a cGMP-based second messenger pathway participates in catecholamine biosynthesis regulation in chromaffin cells, a mechanism which may be widespread in other catecholamine-synthesizing cells.  相似文献   

19.
An unusual monomeric cGMP-dependent protein kinase, enriched in cilia, was isolated from Paramecium cilia and whole cells. Cilia and whole cell extracts had relatively high ratios of cGMP-dependent to cAMP-dependent protein kinase activity (1:2). The calculated molecular weight of the native enzyme was 88,000. The enzyme was identified on sodium dodecyl sulfate-polyacrylamide gels as a 77,000 molecular weight band based on copurification of this protein with enzyme activity, 8-N3-[32P]cAMP labeling, and autophosphorylation. Based on the size of the native enzyme, it was concluded that the kinase is a monomer with cGMP-binding and catalytic activities on the same polypeptide. Dimer-sized cGMP-dependent protein kinase, like that of the well characterized mammalian enzyme, was never seen, despite stringent efforts to control proteolysis. The structure of the Paramecium cGMP-dependent protein kinase supports a model in which the dimeric vertebrate form of the enzyme evolved from an early monomeric form. The catalytic properties of the Paramecium enzyme differed in several respects from those of the mammalian enzyme: it could use GTP or ATP as the phosphoryl donor, it did not phosphorylate Kemptide effectively, and it had poor histone kinase activity with high Mg2+ concentrations. Quercertin, 5'-guanylyl imidodiphosphate, indomethacin, and the isoquinolinesulfonamide drug H7 inhibited Paramecium cGMP-dependent protein kinase activity. The enzyme had fast and slow binding sites (with kd values of 5-10 x 10(-3)s-1 and 0.44 x 10(-3)s-1) and showed an order of preference for cyclic nucleotides and cyclic nucleotide analogs similar to that of the mammalian enzyme.  相似文献   

20.
The autophosphorylation reaction of purified cGMP-dependent protein kinase has been studied. Apparent initial rates of autophosphorylation in the absence of cyclic nucleotides and in the presence of cGMP and cAMP are 0.006, 0.04, 0.4 mol Pi incorp./min-1. mol cGMP-kinase subunit-1. In the presence of cGMP and cAMP approximately 1 and 2 mol Pi are incorporated/mol enzyme subunit. These values are independent of the enzyme concentration. Stimulation of autophosphorylation by cAMP is not due to activation of a contaminating cAMP-dependent protein kinase since: (a) addition of the heatstable inhibitor protein of cAMP-kinase does not inhibit autophosphorylation; and (b) catalytic subunit of cAMP-kinase added at a 10-fold excess over cGMP-kinase does not phosphorylate cGMP-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号