首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Muscle precursor replication in Swiss mice, in which muscle regeneration is exceptionally vigorous, was compared with previous data for regeneration in BALBc mice. The tibialis anterior muscles of 23 male and 15 female inbred Swiss SJL/J mice were crush injured, and tritiated thymidine injected into mice at various times after injury to label replicating muscle precursors. Lesion samples were taken 10 days after injury, processed for autoradiography, and grain counts of myotube nuclei analysed. Muscle regeneration was more vigorous in male compared with female Swiss mice, and in both was strikingly greater than that in BALBc mice in which there was extensive fibrous connective tissue throughout the lesions. Autoradiographic analysis showed that muscle precursor replication started at 24 hours in Swiss mice, 6 hours earlier than the onset at 30 hours in BALBc mice. Muscle precursor replication appeared to be more active 96 hours after injury in female Swiss compared with male BALBc and male Swiss mice respectively, although numbers of precursor cells replicating at other times were similar. It is not known whether the slight difference in onset of muscle precursor replication can alone account for the more complete muscle regeneration seen in Swiss mice. Similar studies were carried out in 11 male and 10 female F1 hybrid (SJL/J x BALBc) mice. Analysis of labelled myotube nuclei showed that muscle precursors did not synthesise DNA prior to 30 hours after injury, and regeneration resembled that of the parental BALBc strain.  相似文献   

2.
Summary We test the proposal (McGeachie and Grounds 1985) that myogenesis following severe (crush) injury is prolonged compared with minor (cut) injury. Forty-four mice were injured with a cut and a crush lesion on different legs, and tritiated thymidine was injected at various times after injury (0 to 120 h), samples of regenerated muscle were taken 9d after injury and autoradiography was used to determine the initiation of muscle precursor replication, and duration of proliferation after the two different injuries.In both lesions replication of potential myoblasts was initiated 30 h after injury. Myogenesis was essentially completed in cut lesions by 96 h after injury, although the peak was finished by 60 h. In contrast, significant muscle precursor replication in crush lesions was still occurring 96 h after injury, and myogenesis was almost finished by 120 h. The pronounced difference in duration of myogenesis in different lesions strongly supports the original proposalThe extended duration of myogenesis in crush lesions, in conjunction with tritiated thymidine reutilisation, appears to account for conflicting experimental results in support of the concept of a circulating muscle precursor cell.  相似文献   

3.
Summary Skeletal muscle regeneration in SJL/J and BALB/c mice subjected to identical crush injuries is markedly different: in SJL/J mice myotubes almost completely replace damaged myofibres, whereas BALB/c mice develop fibrotic scar tissue and few myotubes. To determine the cellular changes which contribute to these differential responses to injury, samples of crushed tibialis anterior muscles taken from SJL/J and BALB/c mice between 1 and 10 days after injury were analysed by light and electron microscopy, and by autoradiography. Longitudinal muscle sections revealed about a 2-fold greater total mononuclear cell density in SJL/J than BALB/c mice at 2 to 3 days after injury. Electron micrographs identified a similar proportion of cell types at 3 days after injury. Autoradiographic studies showed that the proportions of replicating mononuclear cells in both strains were similar: therefore greater absolute numbers of cells (including muscle precursors and macrophages) were proliferating in SJL/J muscle. Removal of necrotic muscle debris in SJL/J mice was rapid and extensive, and by 6 to 8 days multinucleated myotubes occupied a large part of the lesion. By contrast, phagocytosis was less effective in BALB/c mice, myotube formation was minimal, and fibrotic tissue conspicuous. These data indicate that the increased mononuclear cell density, more efficient removal of necrotic muscle, together with a greater capacity for myotube formation in SJL/J mice, contribute to the more successful muscle regeneration seen after injury.  相似文献   

4.
The dysferlin deficient SJL/J mouse strain is commonly used to study dysferlin deficient myopathies. Therefore, we systematically evaluated behavior in relatively young (9-25 weeks) SJL/J mice and compared them to C57BL6 mice to determine which functional end points may be the most effective to use for preclinical studies in the SJL/J strain. SJL/J mice had reduced body weight, lower open field scores, higher creatine kinase levels, and less muscle force than did C57BL6 mice. Power calculations for expected effect sizes indicated that grip strength normalized to body weight and open field activity were the most sensitive indicators of functional status in SJL/J mice. Weight and open field scores of SJL/J mice deteriorated over the course of the study, indicating that progressive myopathy was ongoing even in relatively young (<6 months old) SJL/J mice. To further characterize SJL/J mice within the context of treatment, we assessed the effect of fasudil, a rho-kinase inhibitor, on disease phenotype. Fasudil was evaluated based on previous observations that Rho signaling may be overly activated as part of the inflammatory cascade in SJL/J mice. Fasudil treated SJL/J mice showed increased body weight, but decreased grip strength, horizontal activity, and soleus muscle force, compared to untreated SJL/J controls. Fasudil either improved or had no effect on these outcomes in C57BL6 mice. Fasudil also reduced the number of infiltrating macrophages/monocytes in SJL/J muscle tissue, but had no effect on muscle fiber degeneration/regeneration. These studies provide a basis for standardization of preclinical drug testing trials in the dysferlin deficient SJL/J mice, and identify measures of functional status that are potentially translatable to clinical trial outcomes. In addition, the data provide pharmacological evidence suggesting that activation of rho-kinase, at least in part, may represent a beneficial compensatory response in dysferlin deficient myopathies.  相似文献   

5.
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole‐body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi‐weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7‐ or 28 days prior to euthanization. Senescence‐associated β‐Galactosidase positive (SA β‐Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β‐Gal+ cells were also CD11b+ in young and old mice 7‐ and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β‐Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti‐inflammatory macrophages. SA β‐Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q‐treated old mice, muscle regenerated following injury to a greater extent compared to vehicle‐treated old mice, having larger fiber cross‐sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.  相似文献   

6.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin alpha2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and "preactivated" myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin alpha1 was not detectable in skeletal muscle. Laminin alpha2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin alpha2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin alpha chains in early myogenic differentiation, such as laminin alpha4 and alpha5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin beta1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin alpha3 was not expressed in uninjured or regenerating muscle, while integrin alpha6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin alpha6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin alpha6 occurred on some newly formed myotubes. Integrin alpha7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin alpha7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin alpha7 negative. No marked difference was observed in integrin alpha7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin alpha4 and integrin alpha6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin alpha4 and integrin alpha6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin alpha2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

7.
The tumour suppressor gene p53 is recognised as a central regulator of the cell cycle and apoptosis. Post-natally, p53 mutations are associated with many cancers and mice lacking p53 are prone to spontaneous tumour formation. The present study examines skeletal muscle formation in post-natal mice lacking p53 using two different models of skeletal muscle regeneration. The level of endogenous myogenic cell proliferation in mature skeletal muscle was examined and the time course of muscle regeneration after whole muscle transplantation or crush injury were compared in p53 (-/-) and control C57Bl/6J adult mice, using desmin and proliferating cell nuclear antigen (PCNA) immunohistochemistry and histological analysis. The pattern of inflammation, myoblast proliferation and myotube formation in regenerating p53 (-/-) skeletal muscles appears normal and similar to those in control C57Bl/6J muscle. These data indicate that p53 is not required for the regulation of myoblast proliferation, differentiation and myotube formation in vivo during myogenesis of adult skeletal muscle.  相似文献   

8.
目的探讨成肌调节因子MyoD和myogenin在不同月龄DMD模型鼠mdx鼠的表达情况。方法取不同月龄DMD模型鼠mdx鼠以及相应的同龄正常C57鼠的腓肠肌,冰冻切片后用HE染色显示肌肉病理,SABC-DAB染色检测成肌调节因子MyoD和myogenin的表达。结果不同月龄mdx鼠肌肉坏死和再生程度不同,MyoD和myogenin在1月龄mdx鼠表达最强,在13月龄mdx鼠仍有表达,在正常同龄C57鼠不表达。结论MyoD与Myogenin在肌肉损伤后的再生修复过程中起作用,可作为鉴定肌肉前体细胞和反映肌肉再生的指标。  相似文献   

9.
10.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

11.
This study determined whether the genotype of bone marrow-derived inflammatory cells contributes to the more pronounced leukocytic exudation and extensive new muscle formation seen in SJL/J compared with BALB/c mice after a crush-injury (Mitchell et al. 1992). Female SJL/J mice were whole-body irradiated and reconstituted with male bone marrow from the BALB/c strain, and irradiated BALB/c females reconstituted with male SJL/J bone marrow. The mice were allowed to recover for 3 weeks and the tibialis anterior muscle (in a leg which had been protected from irradiation) was injured by crushing. At 3 and 10 days after injury the extent of necrotic debris, mononuclear leukocytic infiltration and new muscle formation was assessed in the muscles. The SJL/J mice reconstituted with BALB/c bone marrow showed extensive mononuclear leukocytic infiltration and clearance of necrotic debris when compared with BALB/c mice reconstituted with SJL/J bone marrow, and these strain-specific differences mirrored those seen with control bone marrow reconstituted hosts and non-irradiated hosts. The results show that the genotype of the bone marrow-derived macrophages is not responsible for the superior regeneration of crush-injured skeletal muscle in SJL/J mice, and it appears that factors intrinsic to the muscle tissue may be of central importance.  相似文献   

12.
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.  相似文献   

13.
Seven strains of mice were examined to determine why susceptibility differences and variations in clinical central nervous system (CNS) disease occurred among these animals after intraperitoneal inoculation of street rabies virus (SRV). Trace experiments for infectious virus indicated that these differences were associated with restriction of virus replication within the CNS. Limitation of viral replication appeared to correlate with the antibody response in that prominent serum anti-SRV neutralizing antibody titers were detected in resistant strains, whereas susceptible strains produced minimal amounts of antibody until their death. The importance of the immune response was reaffirmed with cyclophosphamide studies in that all resistant SJL/J mice died after immunosuppressive treatment. In contrast, cyclophosphamide-treated SJL/J mice whose immune systems were reconstituted with either unfractionated immune spleen cells or with sera 24 h after SRV inoculation survived a lethal dose of SRV. More importantly, immunosuppressed SJL/J and immunodeficient athymic mice were protected when reconstituted with immune serum 72 h after SRV inoculation, a time in which infectious virus was detected in the spinal cords of some mice but was not present in the peritoneal cavity. Additional studies showed that antibody in the cerebrospinal fluid was unimportant in the resistance of mouse strains which remained clinically asymptomatic, but it appeared to be associated with the survival of mice which developed clinical CNS disease. Furthermore, CNS resistance to intranasal or intracerebral inoculation with challenge virus standard rabies virus developed as early as 5 days post-intraperitoneal inoculation of SRV.  相似文献   

14.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin α2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and “preactivated” myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin α1 was not detectable in skeletal muscle. Laminin α2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin α2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin α chains in early myogenic differentiation, such as laminin α4 and α5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin β1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin α3 was not expressed in uninjured or regenerating muscle, while integrin α6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin α6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin α6 occurred on some newly formed myotubes. Integrin α7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin α7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin α7 negative. No marked difference was observed in integrin α7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin α4 and integrin α6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin α4 and integrin α6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin α2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

15.
Recent studies suggested that in old mice, beta cells lose their regenerative potential and cannot respond to mitogenic triggers. These studies examined beta cell replication in aged mice under basal conditions and in response to specific stimuli including treatment with the glucagon-like peptide-1 analog exenatide, streptozotocin injection, partial pancreatectomy, and high fat diet. However, it remains possible that the ability to mount a compensatory response of beta cells is retained in old age, but depends on the specific stimulus. Here, we asked whether partial ablation of beta cells in transgenic mice, using doxycycline-inducible expression of diphtheria toxin, triggers a significant compensatory proliferative response in 1-2-year-old animals. Consistent with previous reports, the basal rate of beta cell replication declines dramatically with age, averaging 0.1% in 2-year-old mice. Transient expression of diphtheria toxin in beta cells of old mice resulted in impaired glucose homeostasis and disruption of islet architecture (ratio of beta to alpha cells). Strikingly, the replication rate of surviving beta cells increased 3-fold over basal rate, similarly to the -fold increase in replication rate of beta cells in young transgenic mice. Islet architecture and glucose tolerance slowly normalized, indicating functional significance of compensatory beta cell replication in this setting. Finally, administration of a small molecule glucokinase activator to old mice doubled the frequency of beta cell replication, further showing that old beta cells can respond to the mitogenic trigger of enhanced glycolysis. We conclude that the potential for functionally significant compensatory proliferation of beta cells is retained in old mice, despite a decline in basal replication rate.  相似文献   

16.
17.
With aging, the skeletal muscles of humans sustain decreases of approximately 30% in mass and maximum force. Contraction-induced injury may contribute to these declines. When a 225 lengthening contraction protocol (LCP) was administered to small, non-weight-bearing muscles of mice, muscles of young/adult mice recovered completely, whereas those of old mice sustained permanent deficits of 20% in muscle mass and maximum force. Despite these observations, whether a large, frequently recruited, weight-bearing muscle sustains such permanent damage is not known. The hypothesis tested is that after a severe contraction-induced injury, large, weight-bearing muscles of old mice sustain permanent reductions in mass and force. The LCP was administered to plantar flexor muscles of adult and old, male C57BL/6 mice. At 3 days, 1 mo, and 2 mo after the LCP, maximum isometric forces were measured, anesthetized mice were euthanized, and muscles were removed and weighed. Two months after the LCP, the muscles of the adult mice regained control values of mass and force, whereas for muscles of old mice the mass decreased by 24% and the maximum force decreased by 32%. We conclude that a severe contraction-induced injury to large, weight-bearing muscles of old mice causes permanent deficits in mass and force.  相似文献   

18.
Satellite cell‐dependent skeletal muscle regeneration declines during aging. Disruptions within the satellite cells and their niche, together with alterations in the myofibrillar environment, contribute to age‐related dysfunction and defective muscle regeneration. In this study, we demonstrated an age‐related decline in satellite cell viability and myogenic potential and an increase in ROS and cellular senescence. We detected a transient upregulation of miR‐24 in regenerating muscle from adult mice and downregulation of miR‐24 during muscle regeneration in old mice. FACS‐sorted satellite cells were characterized by decreased levels of miR‐24 and a concomitant increase in expression of its target: Prdx6. Using GFP reporter constructs, we demonstrated that miR‐24 directly binds to its predicted site within Prdx6 mRNA. Subtle changes in Prdx6 levels following changes in miR‐24 expression indicate miR‐24 plays a role in fine‐tuning Prdx6 expression. Changes in miR‐24 and Prdx6 levels were associated with altered mitochondrial ROS generation, increase in the DNA damage marker: phosphorylated‐H2Ax and changes in viability, senescence, and myogenic potential of myogenic progenitors from mice and humans. The effects of miR‐24 were more pronounced in myogenic progenitors from old mice, suggesting a context‐dependent role of miR‐24 in these cells, with miR‐24 downregulation likely a part of a compensatory response to declining satellite cell function during aging. We propose that downregulation of miR‐24 and subsequent upregulation of Prdx6 in muscle of old mice following injury are an adaptive response to aging, to maintain satellite cell viability and myogenic potential through regulation of mitochondrial ROS and DNA damage pathways.  相似文献   

19.
This study compared the physiological process of cholesterol absorption in different strains of inbred mice with the goal of identifying novel mechanism(s) by which cholesterol absorption can be controlled. The rate and amount of cholesterol absorption were evaluated based on [14C]cholesterol appearance in plasma after feeding a meal containing [14C]cholesterol and by the percentage of [14C]-cholesterol absorbed over a 24 h period. Results showed that the rate of [14C]cholesterol appearance in plasma was slower in 129P3/J mice than in SJL/J mice. However, more dietary cholesterol was absorbed over a 24 h period by 129P3/J mice than by SJL/J mice. In both strains of mice, cholesterol delivered with medium-chain triglyceride was absorbed less efficiently than cholesterol delivered with olive oil. The strain- and vehicle-dependent differences in cholesterol absorption efficiency correlated negatively with stomach-emptying rates. Furthermore, inhibition of gastric emptying with nitric oxide synthase inhibitor increased cholesterol absorption efficiency in SJL/J mice. These results document that stomach-emptying rate contributes directly to the rate of dietary cholesterol absorption, which is inversely correlated with the total amount of cholesterol absorbed from a single meal. Additionally, genetic factor(s) that influence gastric emptying may be an important determinant of cholesterol absorption efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号